Astronomers found a monstrous jet powering through the early universe
Scientists have found a quasar spewing a gigantic radio jet in space at a time in the early universe when such objects are nearly impossible to find.
Quasars, a portmanteau for "quasi-stellar objects," are blindingly bright galaxy cores. Through powerful telescopes, these distant objects can look like stars, but they're the resulting light from feasting supermassive black holes.
The jet, sprawling at least 200,000 light-years, double the span of the Milky Way, emerges from the J1601+3102 quasar, born less than 1.2 billion years after the Big Bang. Though a billion years later may not seem like the early days, that period occurred when the universe was only nine percent of its current age of 13.8 billion — making it a mere toddler.
"It's only because this object is so extreme that we can observe it from Earth, even though it's really far away," said Anniek Gloudemans, a research fellow at the federally funded NOIRLab, in a statement.
SEE ALSO: Scientists found a colossal black hole near the dawn of time
The J1601+3102 quasar's radio jet was first discovered by the Low Frequency Array Telescope. Credit: LOFAR / DECaLS / DESI Legacy Imaging Surveys / LBNL / DOE / CTIO / NOIRLab / NSF / AURA
Finding this radio jet, first discovered by the European Low Frequency Array Telescope, is an enormous achievement. Follow-up observations ensued in near-infrared light with the Gemini North Telescope and in visible light with Hobby Eberly Telescope. A research team has characterized the object in a new paper published in The Astrophysical Journal Letters.
These jets become elusive the farther back in time astronomers try to look because of the so-called cosmic microwave background. The ancient radiation, the earliest fossil of light from 380,000 years after the Big Bang, tends to swamp out more subtle signals.
Although quasars are technically difficult to find in the early universe, the nearest quasars to Earth are still several hundred million light-years away. That quasars aren't found closer to home is a clue they are ancient relics. Scientists continue to hunt for them because they provide insight into the evolution of galaxies and the universe as a whole.
Black holes in general are some of the most inscrutable things in space. Astronomers believe these invisible giants skulk at the center of virtually all galaxies. Falling into one is an automatic death sentence. Any cosmic stuff that wanders too close reaches a point of no return.
But scientists have observed something weird at the edge of black holes' accretion disks, the rings of rapidly spinning material around the holes, like the swirl of water around a bathtub drain: A tiny amount of the material can suddenly get rerouted. When this happens, high-energy particles get flung outward as a pair of jets, blasting in opposite directions, though astronomers haven't quite figured out how they work. It's also still a mystery when exactly in cosmic history the universe started making them.
Despite this jet's length, it's a pipsqueak compared to others scientists have discovered in later eras. Porphyrion, observed 6.3 billion years after the Big Bang, has a 23 million light-year-long jet. The J1601+3102 quasar is also of modest size, just 450 million times more massive than the sun. Quasars are sometimes known to tip scales at billions of times heavier than the sun.
"Interestingly, the quasar powering this massive radio jet does not have an extreme black hole mass compared to other quasars," Gloudemans said. "This seems to indicate that you don't necessarily need an exceptionally massive black hole or accretion rate to generate such powerful jets in the early universe."
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
6 hours ago
- Yahoo
New research challenges everything we know about the Big Bang
The Big Bang is often described as the explosive birth of the universe – a singular moment when space, time and matter sprang into existence. But what if this was not the beginning at all? What if our universe emerged from something else – something more familiar and radical at the same time? In a new paper, published in Physical Review D, my colleagues and I propose a striking alternative. Our calculations suggest the Big Bang was not the start of everything, but rather the outcome of a gravitational crunch or collapse that formed a very massive black hole – followed by a bounce inside it. This idea, which we call the black hole universe, offers a radically different view of cosmic origins, yet it is grounded entirely in known physics and observations. Today's standard cosmological model, based on the Big Bang and cosmic inflation (the idea that the early universe rapidly blew up in size), has been remarkably successful in explaining the structure and evolution of the universe. But it comes at a price: it leaves some of the most fundamental questions unanswered. For one, the Big Bang model begins with a singularity – a point of infinite density where the laws of physics break down. This is not just a technical glitch; it's a deep theoretical problem that suggests we don't really understand the beginning at all. To explain the universe's large-scale structure, physicists introduced a brief phase of rapid expansion into the early universe called cosmic inflation, powered by an unknown field with strange properties. Later, to explain the accelerating expansion observed today, they added another 'mysterious' component: dark energy. In short, the standard model of cosmology works well – but only by introducing new ingredients we have never observed directly. Meanwhile, the most basic questions remain open: where did everything come from? Why did it begin this way? And why is the universe so flat, smooth, and large? Our new model tackles these questions from a different angle – by looking inward instead of outward. Instead of starting with an expanding universe and trying to trace back how it began, we consider what happens when an overly dense collection of matter collapses under gravity. This is a familiar process: stars collapse into black holes, which are among the most well-understood objects in physics. But what happens inside a black hole, beyond the event horizon from which nothing can escape, remains a mystery. In 1965, the British physicist Roger Penrose proved that under very general conditions, gravitational collapse must lead to a singularity. This result, extended by the late British physicist Stephen Hawking and others, underpins the idea that singularities – like the one at the Big Bang – are unavoidable. The idea helped win Penrose a share of the 2020 Nobel prize in physics and inspired Hawking's global bestseller A Brief History of Time: From the Big Bang to Black Holes. But there's a caveat. These 'singularity theorems' rely on 'classical physics' which describes ordinary macroscopic objects. If we include the effects of quantum mechanics, which rules the tiny microcosmos of atoms and particles, as we must at extreme densities, the story may change. In our new paper, we show that gravitational collapse does not have to end in a singularity. We find an exact analytical solution – a mathematical result with no approximations. Our maths show that as we approach the potential singularity, the size of the universe changes as a (hyperbolic) function of cosmic time. This simple mathematical solution describes how a collapsing cloud of matter can reach a high-density state and then bounce, rebounding outward into a new expanding phase. But how come Penrose's theorems forbid out such outcomes? It's all down to a rule called the quantum exclusion principle, which states that no two identical particles known as fermions can occupy the same quantum state (such as angular momentum, or 'spin'). And we show that this rule prevents the particles in the collapsing matter from being squeezed indefinitely. As a result, the collapse halts and reverses. The bounce is not only possible – it's inevitable under the right conditions. Crucially, this bounce occurs entirely within the framework of general relativity, which applies on large scales such as stars and galaxies, combined with the basic principles of quantum mechanics – no exotic fields, extra dimensions or speculative physics required. What emerges on the other side of the bounce is a universe remarkably like our own. Even more surprisingly, the rebound naturally produces the two separate phases of accelerated expansion – inflation and dark energy – driven not by a hypothetical fields but by the physics of the bounce itself. One of the strengths of this model is that it makes testable predictions. It predicts a small but non-zero amount of positive spatial curvature – meaning the universe is not exactly flat, but slightly curved, like the surface of the Earth. This is simply a relic of the initial small over-density that triggered the collapse. If future observations, such as the ongoing Euclid mission, confirm a small positive curvature, it would be a strong hint that our universe did indeed emerge from such a bounce. It also makes predictions about the current universe's rate of expansion, something that has already been verified. This model does more than fix technical problems with standard cosmology. It could also shed new light on other deep mysteries in our understanding of the early universe – such as the origin of supermassive black holes, the nature of dark matter, or the hierarchical formation and evolution of galaxies. These questions will be explored by future space missions such as Arrakhis, which will study diffuse features such as stellar halos (a spherical structure of stars and globular clusters surrounding galaxies) and satellite galaxies (smaller galaxies that orbit larger ones) that are difficult to detect with traditional telescopes from Earth and will help us understand dark matter and galaxy evolution. These phenomena might also be linked to relic compact objects – such as black holes – that formed during the collapsing phase and survived the bounce. The black hole universe also offers a new perspective on our place in the cosmos. In this framework, our entire observable universe lies inside the interior of a black hole formed in some larger 'parent' universe. We are not special, no more than Earth was in the geocentric worldview that led Galileo (the astronomer who suggested the Earth revolves around the Sun in the 16th and 17th centuries) to be placed under house arrest. We are not witnessing the birth of everything from nothing, but rather the continuation of a cosmic cycle – one shaped by gravity, quantum mechanics, and the deep interconnections between them. Enrique Gaztanaga is a Professor in the Institute of Cosmology and Gravitation (University of Portsmouth) at the University of Portsmouth. This article is republished from The Conversation under a Creative Commons license. Read the original article.
Yahoo
6 hours ago
- Yahoo
James Webb telescope spots the earliest galaxy ever recorded
The James Webb Space Telescope spotted the earliest galaxy ever recorded. Looking through space is also looking through time: We see objects as they were when the light left them, so when we look at the Sun, we see it as it was eight minutes ago. Newly discovered galaxy MoM z14, which lies a mere 13.53 billion light years away, is also the most distant object ever sighted, so it appears as it was just 280 million years after the Big Bang, when the universe was only 2% of its current age. As well as being an impressive technical feat, the discovery challenges physicists' models of galaxy formation, implying that they formed more quickly than previously believed.


WIRED
a day ago
- WIRED
Astronomers Have Detected a Galaxy Millions of Years Older Than Any Previously Observed
Jun 3, 2025 5:00 AM Researchers estimate that MoM z14 was created 280 million years after the Big Bang, 10 million years earlier than the previous most primitive galaxy recorded. The Big Bang is estimated to have taken place 13.8 billion years ago. Illustration: Getty Images With the help of the James Webb Space Telescope, a team of astronomers has broken the record for the oldest, most distant galaxy detected to date by humans. In a preprint study, still awaiting peer review and publication in a journal, astronomers describe this primitive galaxy, giving it the name MoM z14. According to the researchers' calculations, this 'cosmic miracle' originated 280 million years after the Big Bang, beating the record set by the discovery just last year of JADES-GS-Z14-0, a galaxy created 290 million years after the origin of the universe. To put these measurements in context, the current age of the universe is estimated to be 13.8 billion years. Earth has an approximate age of 4.543 billion years. No one expected the James Webb Space Telescope to have the potential to observe things so close in age to the Big Bang just three and a half years after launch. A brief reminder about distances relative to space-time. Because light travels at a finite speed of 300,000 meters per second, and because space is expanding, observing light from very distant objects is equivalent to seeing what they were like long ago. For example, when we say that MoM z14 is roughly 13.5 billion years old, that means you would have to travel 13.5 billion years at the speed of light to reach its destination. So far, there is no point detected by a scientific instrument farther away, and at the same time, older, than this one. The James Webb Space Telescope, with its ability to peer deep into distant space, allows us to study some aspects of the universe in its early stages. How does it do this? By infrared sensors. Due to the expansion of the universe, almost all the galaxies we see from Earth are moving away from us. So, from our point of view, their light appears to have a longer wavelength because it is stretched by this movement. We call this 'redshift': Their wavelengths are redder because they are longer, and so shift towards the red end of the light spectrum. The earlier an object was created, and therefore the farther away it is, having expanded outwards for a longer period of time, the greater the redshift. The James Webb Space Telescope was able to determine that MoM z14 is 50 times smaller than the Milky Way, and also detected the presence of nitrogen and carbon in the galaxy. This is significant because, despite being only 280 million years older than the Big Bang, this shows that MoM z14 does not belong to the first generation of galaxies formed, since stars in these galaxies would be made up only of hydrogen and helium, the elements that predominantly made up the early universe. Heavier elements only arrived later, after being produced in stars. Can the James Webb cross that threshold and find the first generation of galaxies? Such discoveries could be a long way off, but we have to keep looking. This story originally appeared on WIRED en Español and has been translated from Spanish.