
Oxford study finds 'extraordinary' tremors caused by tsunamis
A series of "extraordinary" tremors observed across the globe were caused by two tsunamis stranded within a fjord in Greenland, a new study has confirmed.During September and October 2023, the "bizarre" seismic activity was observed every 90 seconds over intermittent periods each month.New University of Oxford-led research confirmed it was caused by two mega tsunamis, which occurred after the warming of a glacier led to two major landslides.The tsunamis became trapped standing waves that surged back and forth within the remote Dickson fjord in eastern Greenland, causing the tremors, the study found.
The research's lead author Thomas Monahan, from the University of Oxford, said: "Climate change is giving rise to new, unseen extremes."These extremes are changing the fastest in remote areas, such as the Arctic, where our ability to measure them using physical sensors is limited."
To conduct the study into what researchers called the "extraordinary" tremors , scientists used new techniques to interpret data recorded by satellites orbiting the globe.This altimetry data measures the height of the Earth's surface by recording how long it takes for a radar pulse to travel from a satellite to the surface and back again.Conventional altimeters were unable to record evidence of the Greenland tsunamis, but a satellite launched in December 2022 had the equipment capable of doing so - allowing researchers to observe the trapped waves."This study shows how we can leverage the next generation of satellite earth observation technologies to study these processes," Mr Monahan said.Co-author of the study Prof Thomas Adcock added: "This study is an example of how the next generation of satellite data can resolve phenomena that has remained a mystery in the past."We will be able to get new insights into ocean extremes such as tsunamis, storm surges, and freak waves."
You can follow BBC Oxfordshire on Facebook, X (Twitter), or Instagram.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


BBC News
11 hours ago
- BBC News
Oxford study finds 'extraordinary' tremors caused by tsunamis
A series of "extraordinary" tremors observed across the globe were caused by two tsunamis stranded within a fjord in Greenland, a new study has September and October 2023, the "bizarre" seismic activity was observed every 90 seconds over intermittent periods each University of Oxford-led research confirmed it was caused by two mega tsunamis, which occurred after the warming of a glacier led to two major tsunamis became trapped standing waves that surged back and forth within the remote Dickson fjord in eastern Greenland, causing the tremors, the study found. The research's lead author Thomas Monahan, from the University of Oxford, said: "Climate change is giving rise to new, unseen extremes."These extremes are changing the fastest in remote areas, such as the Arctic, where our ability to measure them using physical sensors is limited." To conduct the study into what researchers called the "extraordinary" tremors , scientists used new techniques to interpret data recorded by satellites orbiting the altimetry data measures the height of the Earth's surface by recording how long it takes for a radar pulse to travel from a satellite to the surface and back altimeters were unable to record evidence of the Greenland tsunamis, but a satellite launched in December 2022 had the equipment capable of doing so - allowing researchers to observe the trapped waves."This study shows how we can leverage the next generation of satellite earth observation technologies to study these processes," Mr Monahan of the study Prof Thomas Adcock added: "This study is an example of how the next generation of satellite data can resolve phenomena that has remained a mystery in the past."We will be able to get new insights into ocean extremes such as tsunamis, storm surges, and freak waves." You can follow BBC Oxfordshire on Facebook, X (Twitter), or Instagram.


BBC News
18 hours ago
- BBC News
How groundwater pumping is causing cities to sink at 'worrying speed'
Cities around the world are sinking at 'worrying speed' Animation enabled Twenty-two years ago, when Erna stood outside her house, 'the windows were as high as my chest'. Now they're knee-height. As their home has sunk, she and her family have had to cope with frequent flooding. In the most extreme cases 'we used canoes - the water kept coming in and swamped the ground floor', she says. Erna lives in the Indonesian capital Jakarta - one of the fastest-sinking cities in the world. Her home is in one of the worst-affected areas, the north of the city, and is now much lower than the road. The 37-year-old grew up here and remembers playing in nearby streets and praying in the mosque - that is now long gone, permanently underwater, as is the old port. The walls of her home, built in the 1970s, are cracked, and you can see where thick layers of concrete have been added to the floor to try to restore it to ground level - about 10 times since it was built, and a metre thick in some places. The house is still subsiding, and Erna can't afford to move. Erna and her mother, Soni, have had to raise the floors in their home many times This is one of dozens of coastal regions that are sinking at a worrying speed, according to a study by Nanyang Technological University (NTU) in Singapore. The team studied subsidence in and around 48 coastal cities in Asia, Africa, Europe and the Americas. These are places that are particularly vulnerable to a combination of rising sea levels, which are mainly driven by climate change, and sinking land. Based on the study and population data from the United Nations, the BBC estimates that nearly 76 million people live in parts of these cities that subsided, on average, at least 1cm per year between 2014 and 2020. The impact on their lives can be huge - for example in Tianjin in north-east China, 3,000 people were evacuated from high-rise apartment buildings in 2023, after subsidence left large cracks in nearby streets. All 48 urban areas in the NTU study are shown in this globe. The most extreme cases of subsidence were seen in Tianjin, which has undergone rapid industrial and infrastructural development this century. The worst-hit parts of the city sank up to 18.7cm per year between 2014 and 2020. Select a city below to see how much it is sinking by. A map will display the most subsiding areas in that city in green, with details of factors contributing to subsidence. The subsidence rate is measured from a reference point in each city, which scientists assume is more stable than others - you can read more on the methodology at the end of this article. Abidjan, Côte d'Ivoire Ahmedabad, India Alexandria, Egypt Bangkok, Thailand Barcelona, Spain Buenos Aires, Argentina Chennai, India Chittagong, Bangladesh Choose a city Dalian, China Dar es Salaam, Tanzania Dhaka, Bangladesh Dongguan, China Foshan, China Fukuoka, Japan Guangzhou, China Hangzhou, China Ho Chi Minh City, Vietnam Hong Kong, China Houston, United States Istanbul, Türkiye Jakarta, Indonesia Karachi, Pakistan Kolkata, India Lagos, Nigeria Lima, Peru London, United Kingdom Los Angeles, United States Luanda, Angola Manila, Philippines Miami, United States Mumbai, India Nagoya, Japan Nanjing, China New York, United States Osaka, Japan Philadelphia, United States Qingdao, China Rio de Janeiro, Brazil Seoul, South Korea Shanghai, China Singapore, Singapore St Petersburg, Russia Surat, India Suzhou, China Tianjin, China Tokyo, Japan Washington DC, United States Yangon, Myanmar A 3d model viewer showing land subsidence in the selected city Observed subsidence per year (cm) 0 0 Please wait, a three-dimensional map is currently loading... Tap and move to rotate, pinch to zoom Fastest observed sinking Reference point Landmark Avenida 4 de , Fevereiro Ilha da Cazanga 0 -3.3 Observed subsidence per year (cm) Barrio Padre , Mugica Casa Rosada Observed subsidence per year (cm) 0 -1.5 Sandwip Para Chittagong Port Observed subsidence per year (cm) 0 -9.8 Basundhara , Residential , Area Bangladesh , National Museum Observed subsidence per year (cm) 0 -3.6 Rio das Pedras Christ the , Redeemer 0 -6.3 Observed subsidence per year (cm) Dalian Jinzhou , Bay , International , Airport Hongji Grand , Stage Observed subsidence per year (cm) 0 -16.4 Dongguan , Central Square Nongyuwei 0 -6.5 Observed subsidence per year (cm) Baofeng Temple Beijiaozhen 0 -6.3 Observed subsidence per year (cm) Nansha District The Canton , Tower 0 -6.8 Observed subsidence per year (cm) Central , Xiaoshan , district Lingyin Temple 0 -3.4 Observed subsidence per year (cm) Yongning , Subdistrict Nanjing City , Wall 0 -2.5 Observed subsidence per year (cm) Yinghai , Subdistrict, , Jiaozhou City Qingdao Railway , Station 0 -8 Observed subsidence per year (cm) Yingbin , Expressway Shanghai Tower 0 -10.3 Observed subsidence per year (cm) Classical , Gardens of , Suzhou North-west , Wujiang 0 -4.8 Observed subsidence per year (cm) 0 -18.7 Observed subsidence per year (cm) Bohai Bay Guwenhua Street East Abobo , district St Paul's , Cathedral Observed subsidence per year (cm) 0 -5.1 Adh Dheraa Al , Bahri Lighthouse of , Alexandria Observed subsidence per year (cm) 0 -2.7 Tuen Mun Vitoria Peak 0 -10.6 Observed subsidence per year (cm) Sidi Saiyyed , Mosque Piplaj Observed subsidence per year (cm) 0 -5.1 Tharamani Kapaleeshwarar , Temple Observed subsidence per year (cm) 0 -3.7 Bhatpara Victoria , Memorial 0 -2.8 Observed subsidence per year (cm) Gateway of , India Area near , King's Circle , station, , Matunga East 0 -5.9 Observed subsidence per year (cm) Karanj Surat Diamond , Bourse 0 -6.7 Observed subsidence per year (cm) Penjaringan National , Monument 0 -11.6 Observed subsidence per year (cm) Mochimaru, , Asakura , district Fukuoka Tower Observed subsidence per year (cm) 0 -5.7 Minato ward Atsuta-jingu , Shrine 0 -1.5 Observed subsidence per year (cm) East Konohana , ward Osaka Castle 0 -7.8 Observed subsidence per year (cm) Central , Breakwater, , Koto ward Tokyo Skytree 0 -2.4 Observed subsidence per year (cm) South Dagon , Township Shwedagon , Pagoda 0 -7.5 Observed subsidence per year (cm) City Hall Orange Island 0 -13.1 Observed subsidence per year (cm) Landhi Town Mazar-E-Quaid 0 -15.7 Observed subsidence per year (cm) Ancón district Lima Main , Square 0 -2.4 Observed subsidence per year (cm) Manila Bay Fort Santiago 0 -5.7 Observed subsidence per year (cm) Lakhta Winter Palace 0 -2.9 Observed subsidence per year (cm) Changi Bay Merlion Park 0 -4.6 Observed subsidence per year (cm) Area near , Sinjeong subway , station, , Yangcheon , District Blue House 0 -2 Observed subsidence per year (cm) Sagrada Familia Zona Franca Observed subsidence per year (cm) 0 -7 Kigamboni , district Askari Monument Observed subsidence per year (cm) 0 -3 Democracy , Monument Lam Phakchi, , Nong Chok Observed subsidence per year (cm) 0 -4.1 Istanbul , Airport Hagia Sophia 0 -13.2 Observed subsidence per year (cm) Big Ben South Upminster 0 -4 Observed subsidence per year (cm) Central , Southwest Sam Houston , Park 0 -11 Observed subsidence per year (cm) Hollywood Sign Coastal San , Pedro 0 -2.5 Observed subsidence per year (cm) Freedom Tower Coconut Grove 0 -2.2 Observed subsidence per year (cm) Breezy Point Central Park 0 -3 Observed subsidence per year (cm) Holmesburg Independence , Hall 0 -2.3 Observed subsidence per year (cm) South-west , Washington Memorial , Lincoln 0 -2.2 Observed subsidence per year (cm) East Nhà Bè Independence , Palace 0 -9.5 Observed subsidence per year (cm) Choose another city An animated line break showing building slowly sinking The perils of groundwater pumping Many factors can contribute to subsidence, including building, mining, tectonic shifts, earthquakes, and natural soil consolidation - where soil is pressed closer and becomes more dense over time. But 'one of the most common causes is groundwater extraction', explains the lead researcher on the NTU study, Cheryl Tay. It has had a major impact in half of the 48 coastal cities identified in the study. Groundwater is found beneath the Earth's surface in cracks and spaces in sand, soil and rock. It makes up about half of the water used for domestic purposes - including drinking - around the world. It's also essential for irrigating crops. But as cities grow, freshwater supplies come under strain. Households and industries in some places drill their own wells or boreholes and extract too much - as in Jakarta. Extracting excessive amounts of water in this way over extended periods of time compresses the soil, eventually causing the surface - and everything built on it - to sink or subside. 'A lot of the sinking cities are in Asia or South-East Asia,' says Ms Tay. 'That is likely because the demand for water is much higher there with very fast-growing populations and a lot of development. 'That could lead to higher rates of groundwater extraction and then this could snowball… This means that flooding will be more frequent, intense, and prolonged in the future,' she adds, explaining there could also be 'salt water intrusion that can affect agricultural land and the quality of drinking water'. Some types of ground are affected more than others and Ms Tay believes the risks are especially acute for the many coastal cities built on low-lying deltas - where rivers divide before flowing into the sea. This includes places such as Jakarta, Bangkok, Ho Chi Minh City, and Shanghai. Almost half of Jakarta now sits below sea level. Its location on swampy land where 13 rivers flow into the ocean makes it particularly vulnerable. The combination of land sinking and sea levels rising accelerates the 'relative sea level rise', says Ms Tay. 'There are two components: the land moving down and the water moving up.' Flooding in Jakarta leaves residential and business districts underwater Indonesia's meteorological agency has said that 'the flood cycle, which used to occur every five years, could become more frequent' in Jakarta as 'the overall trend of extreme rainfall is increasing in Indonesia, in line with rising surface temperatures and greenhouse gas concentrations'. Over the past decade, dozens have died in floods in the city and at least 280,000 people have had to leave their homes until the water receded. With parts of Jakarta now 4m lower than they were in 1970, Indonesia decided to build a new capital city - Nusantara - on a different island, Borneo, more than 1,200km (750 miles) away. It is further from the coast and will rely on a huge dam and reservoir to store river and rainwater. The plan is to purify and distribute water to all homes and offices in the new capital, eliminating the need to extract groundwater. However, the new city is controversial and development has slowed. There has been criticism of the $34bn price tag and its environmental impact on one of the most biodiverse places on the planet. Buildings in Ebute Metta, Lagos, where Rukkayat lives, are sinking - the white dotted line shows the highlighted structure's original position Five of the cities studied by NTU are in Africa, including Lagos in Nigeria. Last year, flooding affected more than 275,000 people there. Twenty-eight-year-old Rukkayat moved to Ebute Metta, in the east of the city, three years ago in search of work and a better life. But she could only afford to rent a house in a sinking area - one of the locations identified in the NTU report. 'It's hard to live in a place where it gets easily flooded if downpours or storms hit the city,' she says. 'I have to scoop water out of the corridor.' The walls of the house are cracked, the floor is damp and the roof leaks - a common situation in sinking areas, experts say. Both Lagos and Jakarta are facing rapid urbanisation and growing populations with more than half unable to access piped water, turning instead to pumping groundwater themselves. An animated line break showing water flowing under landmarks The bowl effect As many coastal cities deal with the combination of subsiding land and rising seas, they are looking for solutions - but these can sometimes contribute to other problems. Some, including Jakarta, Alexandria in Egypt and Ho Chi Minh City in Vietnam have built dykes, walls and sand barriers along their coastlines to try to prevent flooding from the sea. A seawall was built to stop seawater swamping homes in North Jakarta Alexandria has built concrete breakwaters to protect the city from the sea But as walls get higher and bigger, a 'bowl effect' can be created, says Prof Pietro Teatini of the University of Padova in Italy, potentially trapping rain and river water in areas and preventing it from flowing back into the sea. This can contribute to flooding. So, to drain excess water, Jakarta and Ho Chi Minh City are among those that have built pumping stations. However, this does not address the causes of subsidence or flooding. How Tokyo solved the problem When Tokyo found parts of its city were subsiding, it took a different approach and decided to tackle the root of the problem. The sinking slowed significantly in the 1970s after Tokyo imposed strict regulations on groundwater pumping. It also built a water supply management system, which scientists argue is the most efficient way to stop subsidence. The NTU study found that today the city is much more stable, although a few small areas have sunk by between 0.01 and 2.4cm per year between 2014 and 2020. So, how does Tokyo's system work? Almost all of Tokyo's water comes from forests and rivers controlled by two big dams outside the city. The water is purified in 10 plants and sent to a supply centre. The centre regulates the volume and pressure of the water. The centre distributes the water to homes and industries via pipes designed to resist earthquake damage. Despite the effectiveness of Tokyo's system, scientists are sceptical it can be applied widely given the high build and maintenance costs, says Prof Miguel Esteban of Waseda University in Japan. Nonetheless, he adds, some Asian cities still look at Tokyo's approach as a model. Taipei, for example, reduced groundwater extraction in the 1970s which, in turn, helped to slow down its subsidence rates. Many other cities - including Houston, Bangkok and London - also carefully regulate groundwater pumping to ensure it is neither too low nor too high. Some cities have tried different methods. Shanghai, for instance, has applied 'water injection, which works very well', says Prof Teatini. It injected purified water from the Yangtze River into the ground through wells that had previously been used to extract groundwater. Others, such as Chongqing in China and San Salvador in El Salvador, have adopted the principles of sponge cities. Instead of simply using non-porous concrete and asphalt in areas such as pavements, a sponge city makes use of surfaces that are designed to absorb water naturally, such as soil, grass and trees. The construction of parks, wetlands and green spaces is prioritised, along with lakes and ponds where water can be diverted and stored during the rainy season. The roof of this building on the edge of Chongqing is designed to absorb water and help manage heavy rainfall A residential complex in Berlin has been designed with areas to store and absorb water This may offer a 'more viable and sustainable solution, it costs only a tenth of building dams', says Prof Manoochehr Shirzaei of Virginia Tech University. But critics say that it is hard to add these features to existing developments and often they are not installed on a large enough scale to make a big difference. And behind any investment, there needs to be long-term political commitment, says Prof Shirzaei. 'Land subsidence emerges gradually over time, so to deal with that, we have to take difficult decisions which remain in place for decades,' he says, even if pumping restrictions are initially unpopular with voters who rely on wells and boreholes for water. Without change, experts warn there will be more people like Erna, fighting a losing battle as their homes gradually slip away. A note on methodology For its study the NTU chose coastal urban agglomerations within 50km (30 miles) of the coast, with a population of at least five million in 2020. It analysed satellite images, comparing data from 2014 to 2020 to estimate subsidence rates. The subsidence rate is measured from a reference point in each city, which scientists assume is more stable than others. However, if the reference point is also sinking or rising, other parts of the city might be sinking faster or slower than the measurements suggest. This could affect the BBC estimates of how many people are affected. The subsidence rates used here should therefore be seen as a relative measure, helping to identify which areas are likely more affected than others. A line break showing a wave


Daily Mail
a day ago
- Daily Mail
Earth's CO2 hits highest recorded level in human history, experts say
There's now more carbon dioxide (CO2) in the atmosphere than ever before in human history, scientists have revealed. For the first time on record, monthly average CO2 levels exceeded 430 parts per million (ppm), according to experts at Scripps Institution of Oceanography in San Diego. The monthly average for May 2025 reached 430.2ppm – the highest level since accurate measurements began 67 years ago. The more CO2 in the atmosphere, the higher the rate of global warming , which could one day could make Earth's surface too hot for humans. At much higher concentrations, CO2 can also cause a variety of health issues. Worryingly, this includes cognitive impairment, drowsiness, nausea and even death in the most extreme cases. 'Another year, another record,' said Ralph Keeling, director of the Scripps CO2 Program. He added: 'It's sad.' Like other greenhouse gases, CO2 acts like a blanket, trapping heat and warming the lower atmosphere. This changes weather patterns and fuels extreme events, such as heat waves, droughts, wildfires, heavy rain and flooding. Rising CO2 levels also contribute to ocean acidification , which makes it more difficult for marine organisms like crustaceans and coral to grow hard skeletons or shells. The experts' new measurements come from Mauna Loa Observatory, a research station situated high on the slopes of the Mauna Loa volcano, Hawaii. At 11,141 feet above sea level, Mauna Loa Observatory measures different gases in the air by shining different kinds of light and radiation through air samples. According to the experts, the observatory's monthly average for May 2025 of 430.2 ppm is an increase of 3.5 ppm over May 2024's measurement of 426.7 ppm. Meanwhile, NOAA's Global Monitoring Laboratory in Boulder, Colorado has separately reported an average of 430.5 ppm – an increase of 3.6 ppm over last year. In a post on X , Jeff Berardelli, meteorologist and climate specialist for WFLA Tampa Bay, called the new record 'concerning'. CO2 is by far the most abundant human-caused greenhouse gas and it can persist in the atmosphere and oceans for thousands of years. According to scientists, the amount of carbon present now in the Earth's atmosphere is equal to that which would have been seen some 4.1 to 4.5 million years ago, during a time which scientists refer to as the 'Pliocene Climatic Optimum'. At this time, the sea level was a whopping 78 feet (24 meters) higher than in the present day, while the average global temperature stood at 7°F (3.9°C) higher than it was before the Industrial Revolution. In fact, the temperature was so warm during this period of time that large forests occupied areas of the Arctic which today are barren, chilly tundra. Although humanity is constantly pumping out CO2 all-year-round, atmospheric CO2 is at its highest in the Northern Hemisphere in the spring – specifically May. Between autumn and spring, much of the hemisphere's plant matter decomposes, releasing CO2 into the atmosphere as it does so. May tends to represent the highest extend of atmospheric CO2 before plants come to life and draw in CO2 to fuel their growth. This begins the process of lowering the amount of CO2 in the atmosphere until the autumn when the plants start to die – and the cycle continues. Researchers say Mauna Loa Observatory's new measurements represent the average state of CO2 in the atmosphere of the Northern Hemisphere. However, CO2 concentrations have not yet passed the 430 ppm mark in the Southern Hemisphere, which has a reversed cycle. It was Scripps scientist Charles David Keeling, father of Ralph Keeling, who was the first to recognise that CO2 levels in the Northern Hemisphere peaked in May. In 1958, he began monitoring CO2 concentrations at Mauna Loa Observatory and documented a long-term increase, known as the Keeling Curve. NOAA's Global Monitoring Laboratory, meanwhile, begun daily CO2 measurements in 1974 and has maintained a complementary, independent measurement record ever since.