logo
Missing link star? Why this 'teenage vampire' white dwarf has scientists so excited

Missing link star? Why this 'teenage vampire' white dwarf has scientists so excited

Yahoo13-06-2025
When you buy through links on our articles, Future and its syndication partners may earn a commission.
Astronomers have discovered the "missing link" connecting the death of sunlike stars to the birth of white dwarf stellar remnants, in the form of a "teenage vampire" white dwarf.
This vampire isn't interested in the blood that runs through your veins, though. The white dwarf in question, designated Gaia22ayj and located around 8,150 light-years from Earth, is ravenously feeding on stellar plasma from a companion star.
The team that made this discovery observed the white dwarf using the Zwicky Transient Facility (ZTF) at the Palomar Observatory in California. The researchers scanned the night sky over the Northern Hemisphere, hunting "transients" — astronomical bodies undergoing rapid change.
Gaia22ayj originally attracted the attention of astronomers with its rapidly pulsing signal, which led to it being classified as a detached double white dwarf binary — two white dwarf stars orbiting each other.
However, this theory didn't quite match further observations of Gaia22ayj, which revealed it to be one of the most extreme pulsating objects ever seen, increasing in brightness by 700% over just a 2-minute span.
That's because Gaia22ayj is actually a white dwarf feeding on a companion star, with this binary in a rare and short-lived phase of its life (or should that be death).
Stars die after they use up the fuel needed for nuclear fusion. What kind of death, and afterlife, they experience depends on their mass.
Stars with masses above eight times that of the sun die in violent supernova explosions and then become either highly dense neutron stars or black holes. Stars with masses closer to that of the sun don't "go nova," instead undergoing more muted transformations into white dwarfs.
Our own sun will experience this latter transformation in around six billion years after shedding most of its mass during a swollen red giant phase, eventually sputtering out as a smoldering stellar ember.
However, around half of all stars with masses similar to that of the sun have a binary companion star. And, if their companion stars get too close, white dwarfs can get a second burst of life by stripping them of stellar material. That vampiric mass transfer process is exactly what seems to be happening between the white dwarf of Gaia22ayj and its companion star.
Gaia22ayj initially confused astronomers. The way that its light intensity varied over time — its light curve— made no sense for a detached double white dwarf binary.
This led Tony Rodriguez, a graduate student in the California Institute of Technology's ZTF Stellar Group, to question why the light curve would take the shape it did. Gathering more data, Rodriguez and colleagues realized that Gaia22ayj is likely a white dwarf orbited by a "normal" low-mass star, not a second white dwarf. And they further determined that Gaia22ayj is highly magnetic, with its white dwarf component spinning at a rapid rate.
This reminded them of a white dwarf pulsar, a highly magnetic dead star that sweeps electromagnetic radiation across the universe as it spins, like a cosmic lighthouse. However, the vampiric feeding process found in Gaia22ayj isn't something usually associated with white dwarf pulsars.
The team eventually concluded that Gaia22ayj is a missing link in the life cycle of white dwarf pulsars, a rare and short-lived early phase of these objects.
"We have already seen two infant systems, white dwarf stars in a binary system whose rapid spin builds up a strong magnetic field. And we had seen lots of adult star systems where the white dwarf star was spinning very slowly," Rodriguez said in a statement.
"But this was the first star we've seen that is right in the middle of its 'teenage' phase, when it has already established a strong magnetic field and is just beginning to funnel matter from the companion star onto itself," he added. "We have never before caught a system in the act of spinning so rapidly but also slowing down dramatically, all while gaining mass from its companion."
This discovery is even more exciting because this phase lasts for just around 40 million years. That might sound like an incredibly long period of time, but it's relatively short when considering that stars like the sun live for around 10 billion years before they even transform into white dwarfs. Thus, this "teenage phase" accounts for just 0.4% of a star's lifetime. For context, if the star were an average human, this teenage phase would last just around 107 days. Hardly enough time to paint your bedroom black.
Related Stories:
— Puffy white dwarfs could shed light on mysterious dark matter. Here's how.
— White dwarfs are 'heavy metal' zombie stars endlessly cannibalizing their dead planetary systems
— 'Daredevil' white dwarf star could be closest-known object to a weird black hole
"The data taken at the W. M. Keck Observatory provided firm evidence that this system had a strong magnetic field and was funneling matter onto the white dwarf," Rodriguez said. "Additional data from the unique instruments available at Palomar Observatory showed that this system is, remarkably, slowing down."
The team's research was published in February in the journal Publications of the Astronomical Society of the Pacific.
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Legendary Hacker & Investor Pablos Holman's 1000x Deep Tech Future
Legendary Hacker & Investor Pablos Holman's 1000x Deep Tech Future

Forbes

time8 hours ago

  • Forbes

Legendary Hacker & Investor Pablos Holman's 1000x Deep Tech Future

Pablos Holman is a hacker, writ large. The first time he spoke for one of my events, in 2010, he captured an audience member's credit card information during a break and started making a purchase on stage. He didn't complete the purchase (or share the number), but he did make his point. When I'm puzzling over a truly far-out concept or epochal challenge, Holman is one of my go-to experts. He's spent his career hacking humanity's biggest challenges with organizations like Blue Origin and Intellectual Ventures. His new book, Deep Future, is a field guide to transformative technology and paradigm-shattering thinking. Fellow Technologists: 'Aim Higher!' Holman calls himself a 'Possibilist'—the future can be better, if we decide to build it. That ethos threads the book and echoes a theme I've written about for years: technology as the art of the possible. To do this well requires reframing problems, escaping established paradigms, and doing the hard work of real invention. Deep Future draws a sharp line between 'shallow tech' and 'deep tech.' Shallow tech enhances convenience. He bluntly proposes, 'If somebody makes an iPhone app to have weed delivered to their dorm room using drones, do we really have to call that tech?' Deep tech expands human capability by orders of magnitude. Holman challenges us: stop chasing 1% gains. 'Deep Tech is about finding the breakthroughs that make it possible to do things 10x, 100x, 1,000x faster, cheaper or better.' Mosquitoes Meet Lasers If you know Pablos, you know about the mosquito-zapping laser invented at Nathan Myhrvold's Intellectual Ventures. The team took apart the malaria problem and tried something new: detect the wingbeat frequency—to distinguish it from other insects—of a female Anopheles in flight and shoot it down. 'We can, and will, eradicate malaria once and for all in our lifetimes. But not by reading the directions,' he the problem, prototype shamelessly and let physics do the heavy lifting. When the approach works—even once—you've expanded what's possible. The mosquito laser array wasn't intended to go to market. Many deep tech visions are. Read the book for dozens of compelling cases. Here are three. Deep Future relates the story of Holman's fund investing in Ladon Robotics, a company reenvisioning ocean-going shipping around autonomy and wind. Consider the economics: 'About five out of six dollars spent on a ship during its life is burned as fuel. This industry literally burns most of its operational expenditures.' Ladon's idea is deceptively simple: autonomous ships powered by wind, with sun-powered battery auxiliary propulsion for navigating harbors and periods with low winds. In other words, remove fuel from the costs. It's classic deep tech. It doesn't 'improve' shipping, it transforms it. Renewables stumble on intermittency and storage. Holman proposes to ensure the sun never sets on your solar farm. 'Put those solar panels on a rocket ship, blast them into space.' Orbital solar farms could intercept sunlight 24/7, receiving eight times as much energy as they would on the Earth's surface. The system could deliver electricity via radio waves to receiving antennas on the ground, 'even in the middle of the night or during a snowstorm.' A decade ago, this would have read like a comic book. Falling launch costs and mature RF beam-forming technologies make this increasingly feasible. Holman argues, 'All the technology to do this exists already. No breakthroughs necessary.' It's a plausible path to low-cost power—precisely the kind of paradigm flip deep tech is meant to deliver. While others have proposed such a solution, Holman's venture firm Deep Future has invested in Virtus Solis, a team endeavoring to make it happen. Some of the best solutions have been around for centuries. Consider concrete, civilization's foundation and one of our dirtiest materials. Holman highlights the work of MIT's Admir Masic, which helps explain why Ancient Rome's Pantheon still stands: lime clasts throughout Roman concrete act as self-healing reservoirs. 'When water seeps in, it activates the lime and fills the cracks. It is self-healing concrete that gets stronger with time.' Longer-lasting infrastructure with 10% - 50% lower lifecycle carbon emissions. With cement accounting for approximately 8% – 13% of global CO₂ emissions, this matters. Unlike most deep tech solutions, this one has thousands of years of proof behind it. Massive Thinking, Brutal Simplicity Holman's examples—mosquito lasers, autonomous shipping, space-based solar, self-healing concrete--exhibit how to see differently: select huge problems that matter, don't let current reality get in the way, discover opportunities the incumbents ignore. While Deep Future is about audacious thinking and enormously challenging technology, much of Holman's thinking illustrates a skill I call 'brutal simplicity.' It's an approach we can all use. Here are three questions to help you do so: The first question seeks clarity before seeking solutions. Do we really understand the problem? The second tests whether we have the right problem in mind. The third question challenges us to seek as simple--though not necessarily easy--a solution as possible. Consider one of Deep Future's examples. Problem: How can we generate clean, reliable electricity at scale? Blast solar panels into space and beam the power back to Earth. Eh, voila: Virtus Solis. Ignore The Boogeymen: Build Anyway Big ideas attract bigger anxieties. Holman devotes a chapter to our habit of telling 'boogeyman' stories about new tools—nuclear, psychedelics, AI, you name it. His advice? Research, experiment, invent—then regulate the real risks we discover. The future won't be built by the skeptics. It belongs to pragmatic optimists who make better stories true. While I wouldn't expect mosquito lasers at your next BBQ, you'll likely discover a lot of you-heard-it-here-firsts in Holman's book. Thanks to the Possibilists amongst us, some of these monstrously hard, brutally simple visions will one day become reality.

This real 'Eye of Sauron' spits out ghost particles in space. Here's what it looks like
This real 'Eye of Sauron' spits out ghost particles in space. Here's what it looks like

Yahoo

time8 hours ago

  • Yahoo

This real 'Eye of Sauron' spits out ghost particles in space. Here's what it looks like

When you buy through links on our articles, Future and its syndication partners may earn a commission. For about 15 years, a powerful radio telescope on planet Earth dutifully recorded data about a location in the cosmos billions of light-years away from us — and, at last, astronomers managed to stitch together those extensive observations to reveal a full picture of what this telescope has been looking at. It's … the Eye of Sauron! Well, sort of. Though the image you're seeing bears a striking resemblance to the jarring symbol associated with the main villain in the Lord of the Rings trilogy of novels by J.R.R. Tolkien, it's actually something far more fear-inducing. At face value, at least. What you're looking at is actually a blazar, which requires a couple of layers to explain. Out in the universe, there are these things called quasars, which refer to the extremely luminous centers of active galaxies (meaning they emit a lot of electromagnetic radiation) that are powered by supermassive black holes. These galactic cores are called active galactic nuclei, or AGNs; and in fact, the monster black holes powering these phenomena can also funnel matter outward in the form of highly energetic jets of particles moving at nearly the speed of light. It's all very intense. Quasars can be so bright that they outshine the collective light of every single star in the galaxy surrounding them. Blazars, on the other hand, are pretty much quasars — except with those supermassive-black-hole-rooted jets pointing within 10 degrees of our planet. That doesn't exactly mean we're about to be obliterated by a jet, though. Remember how I said the fear remains at face value? The only reason we're seeing the jet pointing straight toward us is because of our vantage point, and this doesn't necessarily increase its danger. Still, blazars, because of this serendipitous orientation, tend to appear even brighter than the already ridiculously bright quasars. Not that it matters, but Sauron would sure love them. "When we reconstructed the image, it looked absolutely stunning," Yuri Kovalev, lead author of the study and principal investigator of the Multi-messenger Studies of Extragalactic Super-colliders project at the Max Planck Institute for Radio Astronomy (MPIfR), said in a statement. "We have never seen anything quite like it — a near-perfect toroidal magnetic field with a jet, pointing straight at us." "This alignment causes a boost in brightness by a factor of 30 or more," explains Jack Livingston, a study co-author at MPIfR. "At the same time, the jet appears to move slowly due to projection effects — a classic optical illusion." And this particular blazar could be the one blazar to rule them all. Scientists have formed a clear image of it using observations from the Very Long Baseline Array (named PKS 1424+240), and it may very well be one of the brightest sources of high-energy gamma rays and cosmic neutrinos ever observed. Neutrinos are mind-blowing items themselves, while we're at it. They're nicknamed "ghost particles" because they're invisible, zippy bits that penetrate the entirety of our cosmos yet remain tremendously difficult to detect. Trillions of these particles are flowing through your body as you read this, but you can't tell because they don't interact with any of the particles that make up your body. They slide right through. The IceCube Neutrino Observatory near the South Pole, specifically built to pin down neutrinos, is actually the institution that discovered PKS 1424+240 in the first place because of its super high neutrino emission levels. Solving this puzzle confirms that active galactic nuclei with supermassive black holes are not only powerful accelerators of electrons, but also of protons — the origin of the observed high-energy neutrinos," concludes Kovalev. Reconstructing the spectacular blazar, according to the discovery team, also allows astronomers to peer directly into the "heart" of this jet — and that could be great news for scientists trying to understand the dynamics of these awesome objects. Kovalev explains that it confirms AGNs with supermassive black holes don't only accelerate electrons (negatively charged particles that make up atoms) but also protons. This is a big find, the researcher explains, because that explains the origin of the high-energy neutrinos PKS 1424+240 appears to be spitting out. A study about these results was published on Tuesday (Aug. 12) in the journal Astronomy & Astrophysics Letters. Solve the daily Crossword

These Science Fiction Novels Will Take You on an Epic Journey
These Science Fiction Novels Will Take You on an Epic Journey

New York Times

time15 hours ago

  • New York Times

These Science Fiction Novels Will Take You on an Epic Journey

Science fiction is a genre of vectors. Its stories are arrows tipped with science, fletched with 'what-if' and shot out of the present into the future. Some are warning shots, exposing the weak spots in our politics or social architecture. Many provide the kind of escapist fun I'd inhale as a kid — under the covers, by flashlight. And then there are the rare few that pierce the future square in the chest, a note dangling from the shaft that reads, 'I told you so.' For me, it is the science fiction cloaked in myth that carries the most power. Lest your mind careen toward elves on spaceships, let me clarify: I'm not talking about a subgenre here, or about cross-pollination with fantasy. For me, myth is a tone, imbued with the gravity of fate and eternal truth. Whether a lullaby of mankind's ancient cradle or a requiem for the collapse of stellar empires, these tales sing out from the mist to remind us of our nature. For the most part, the heroes of these novels inhabit dark, decaying worlds. Their epic journeys through that darkness have often helped me find the light. Here are a few of my favorites. The Book of the New Sun Wolfe's four-part saga feels like a relic of another epoch — scribbled in the midnight hollows of an abbey by a mad theologian, or summoned into being by the high priest of some fallen empire and beamed back to us across the millenniums. Set on a distant, dying Earth, the book (which was actually written by a Korean War vet living in Illinois in the 1980s) follows Severian, a torturer's apprentice exiled for the crime of mercy, as he wanders a world so far in the future that it has relapsed into medievalism. Science has become sorcery. Spaceports crumble to ruins. I have read this book at least five times and still struggle to succinctly sum it up. It is dense, archaic, feverish and beautiful — a meditation on the tragedy of mortals on an immortal stage that will haunt you long after its final page. Let Us Help You Find Your Next Book: Science Fiction Our Favorite Sci-Fi Reads Want all of The Times? Subscribe.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store