logo
Incredible photo catches the sun rising behind the world's largest telescope

Incredible photo catches the sun rising behind the world's largest telescope

Yahoo23-04-2025

When you buy through links on our articles, Future and its syndication partners may earn a commission.
Construction of the world's largest telescope has reached its highest point with assembly of the roof's dome and large sliding doors that will shield the observatory.
The European Southern Observatory (ESO) recently shared new progress photos of the Extremely Large Telescope (ELT), the world's largest visible- and infrared-light telescope. The ELT is currently under development on the Cerro Armazones mountain in Chile's Atacama Desert and expected to see its "first light" by 2028.
ESO shared a stunning view of the ELT's construction, including one with a gorgeous, glowing sun rising up behind the telescope on April 12. The photo was taken by Eduardo Garcés from the Cerro Paranal mountain, home to ESO's Very Large Telescope, which is about 14 miles (23 kilometers) from the ELT, capturing a silhouette of the dome's structure surrounded by construction equipment.
The ELT reached a significant milestone recently with the completion of one of the dome's sliding doors — and assembly started on the second — marking the highest point of the dome's construction, according to a statement from the ESO.
ESO and Chilean flags were placed at the top of the telescope's dome as part of a Topping Out or Roofing Ceremony (called Tijerales in Chile) held on April 16, which included a traditional barbecue for workers on site and was live-streamed for industrial and institutional partners celebrating the milestone in Garching, Germany, according to the statement.
ESO shared an up-close view of the dome's roof structure and two flags streaming in the wind, which can produce powerful gusts in the Atacama desert. The two sliding doors located on the dome's roof open laterally and are designed to protect the telescope from the harsh desert environment. They will be closed during the day to shield the telescope from unwanted light and open at night for astronomical observations. The dome also includes a mechanism to seal the interior, preventing wind, rain, dust, and light from entering.
Garcés took a similar photo in August 2023, which shows a more skeletal frame of the dome without its protective cladding and underscores how construction has progressed in less than two years.
Another recent progress photo taken on April 14 using one of the live webcams on site captured the bright Milky Way flowing above the telescope's dome, illuminated by stars shining in the night sky. Peeking out through the open roof is the white frame of the telescope's main structure that will support its optical equipment, including its primary mirror that measures 128 feet (39 meters) across — the largest ever made for an optical telescope.
The massive dome measures 305 feet (93 meters) in diameter, or about the size of a football field and stands 263 feet (80 meters) tall. Featuring a 130-foot-wide (39.3m) mirror, the ELT will study the universe in visible light to provide a more detailed view of potentially habitable exoplanets, the formation of the first galaxies, supermassive black holes, and the nature of dark matter and dark energy.

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

A new observatory is assembling the most complete time-lapse record of the night sky ever
A new observatory is assembling the most complete time-lapse record of the night sky ever

Yahoo

time5 hours ago

  • Yahoo

A new observatory is assembling the most complete time-lapse record of the night sky ever

On 23 June 2025, the world will get a look at the first images from one of the most powerful telescopes ever built: the Vera C. Rubin Observatory. Perched high in the Chilean Andes, the observatory will take hundreds of images of the southern hemisphere sky, every night for 10 years. In doing so, it will create the most complete time-lapse record of our Universe ever assembled. This scientific effort is known as the Legacy Survey of Space and Time (LSST). Rather than focusing on small patches of sky, the Rubin Observatory will scan the entire visible southern sky every few nights. Scientists will use this rolling deep-sky snapshot to track supernovae (exploding stars), asteroids, black holes, and galaxies as they evolve and change in real time. This is astronomy not as a static snapshot, but as a cosmic story unfolding night by night. At the heart of the observatory lies a remarkable piece of engineering: a digital camera the size of a small car and weighing over three tonnes. With a staggering 3,200 megapixels, each image it captures has enough detail to spot a golf ball from 25km away. Get your news from actual experts, straight to your inbox. Sign up to our daily newsletter to receive all The Conversation UK's latest coverage of news and research, from politics and business to the arts and sciences. Each image is so detailed that it would take hundreds of ultra-high-definition TV screens to display it in full. To capture the universe in colour, the camera uses enormous filters — each about the size of a dustbin lid — that allow through different types of light, from ultraviolet to near-infrared. The observatory was first proposed in 2001, and construction at the Cerro Pachón ridge site in northern Chile began in April 2015. The first observations with a low-resolution test camera were carried out in October 2024, setting up the first images using the main camera, to be unveiled in June. The observatory is designed to tackle some of astronomy's biggest questions. For instance, by measuring how galaxies cluster and move, the Rubin Observatory will help scientists investigate the nature of dark energy, the mysterious force driving the accelerating expansion of the Universe. As a primary goal, it will map the large-scale structure of the Universe and investigate dark matter, the invisible form of matter that makes up 27% of the cosmos. Dark matter acts as the 'scaffolding' of the universe, a web-like structure that provides a framework for the formation of galaxies. The observatory is named after the US astronomer Dr Vera Rubin, whose groundbreaking work uncovered the first strong evidence for dark matter – the very phenomenon this telescope will explore in unprecedented detail. As a woman in a male-dominated field, Rubin overcame numerous obstacles and remained a tireless advocate for equality in science. She died in 2016 at the age of 88, and her name on this observatory is a tribute not only to her science, but to her perseverance and her legacy of inclusion. Closer to home, Rubin will help find and track millions of asteroids and other objects that come near Earth – helping warn astronomers of any potential collisions. The observatory will also monitor stars that change in brightness, which can reveal planets orbiting them. And it will capture rare and fleeting cosmic events, such as the collision of very dense objects called neutron stars, which release sudden bursts of light and ripples in space known as gravitational waves. What makes this observatory particularly exciting is not just what we expect it to find, but what we can't yet imagine. Many astronomical breakthroughs have come from chance: strange flashes in the night sky and puzzling movements of objects. Rubin's massive, continuous data stream could reveal entirely new classes of objects or unknown physical processes. But capturing this 'movie of the universe' depends on something we often take for granted: dark skies. One of the growing challenges facing astronomers is light pollution from satellite mega-constellations – a group of many satellites working together. These satellites reflect sunlight and can leave bright streaks across telescope images, potentially interfering with the very discoveries Rubin is designed to make. While software can detect and remove some of these trails, doing so adds complexity, cost and can degrade the data. Fortunately, solutions are already being explored. Rubin Observatory staff are developing simulation tools to predict and reduce satellite interference. They are also working with satellite operators to dim or reposition spacecraft. These efforts are essential – not just for Rubin, but for the future of space science more broadly. Rubin is a collaboration between the US National Science Foundation and the Department of Energy, with global partners contributing to data processing and scientific analysis. Importantly, much of the data will be publicly available, offering researchers, students and citizen scientists around the world the chance to make discoveries of their own. The 'first-look' event, which will unveil the first images from the observatory, will be livestreamed in English and Spanish, and celebrations are planned at venues around the world. For astronomers, this is a once-in-a-generation moment – a project that will transform our view of the universe, spark public imagination and generate scientific insights for decades to come. This article is republished from The Conversation under a Creative Commons license. Read the original article. Noelia Noël does not work for, consult, own shares in or receive funding from any company or organisation that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.

SpaceX launches Starlink satellite stack from Vandenberg Space Force Base (photos)
SpaceX launches Starlink satellite stack from Vandenberg Space Force Base (photos)

Yahoo

time9 hours ago

  • Yahoo

SpaceX launches Starlink satellite stack from Vandenberg Space Force Base (photos)

When you buy through links on our articles, Future and its syndication partners may earn a commission. SpaceX launched another batch of its Starlink satellites this evening (June 4) from California. A Falcon 9 rocket launched SpaceX's Starlink 11-22 mission from Vandenberg Space Force Base today at 7:40 p.m. EDT (2340 GMT; 4:40 p.m. local time in California). The stack of 27 Starlink satellites began their journey into low Earth orbit (LEO) aboard a Falcon 9 first-stage booster designated B1063. This was the 26th launch of B1063, which has now supported 18 Starlink missions. Booster 1063 missions Sentinel-6 Michael Freilich | DART | Transporter-7 | Iridium OneWeb | SDA-0B | NROL-113 | NROL-167 | NROL-149 | 17 Starlink missions The nine Merlin engines at the bottom of B1063 shut down approximately 2.5 minutes after liftoff, followed immediately by the separation of the booster from the Falcon 9's upper stage. About 8.5 minutes after liftoff, the B1063 landed safely on SpaceX's Of Course I Still Love You drone ship, stationed in the Pacific Ocean. Its successful landing inches it closer to SpaceX's record-holder B1067, which has flown a total of 28 launches. The rocket's upper stage continued toward LEO, ultimately deploying the 27 Starlink satellites there about one hour into flight. Each satellite will maneuver into more specific orbits within the Starlink's megaconstellation over the next few days. Related stories: — SpaceX: Facts about Elon Musk's private spaceflight company — Starlink satellites: Facts, tracking and impact on astronomy — SpaceX Falcon 9 rocket launches 21 Starlink satellites on record-setting 26th flight (video, photos) SpaceX's Starlink network consists of more than 7,600 operational satellites and counting. As a whole, they operate in a lattice that provides a blanket of coverage to nearly all of the planet. Starlink offers users a high-speed internet connection from anywhere customers are able to point their Starlink receiver toward the sky (other than the poles). Tonight's launch was SpaceX's 68th Falcon 9 mission of 2025 and 71st overall liftoff so far this year. The additional three were test flights of Starship, SpaceX's next-generation super-heavy-lift rocket, which most recently launched on May 27.

James Webb Space Telescope unveils fiery origins of a distant, hellish exoplanet
James Webb Space Telescope unveils fiery origins of a distant, hellish exoplanet

Yahoo

time11 hours ago

  • Yahoo

James Webb Space Telescope unveils fiery origins of a distant, hellish exoplanet

When you buy through links on our articles, Future and its syndication partners may earn a commission. Astronomers using NASA's James Webb Space Telescope (JWST) have uncovered the tumultuous history of a distant, hellishly hot exoplanet that's being stretched and scorched by its star. The planet, known as WASP-121b, is locked in a dangerously close orbit around a star roughly 900 light-years away that's brighter and hotter than our sun. Locked in a blistering 30-hour orbit, the world lies so close to its star that intense tidal forces have warped it into a football-like shape, leaving it on the verge of being torn apart by gravity. One side of the planet faces its star permanently, baking at temperatures over 3,000°C (5,400°F) — hot enough for it to rain liquid iron. Even the opposite hemisphere, locked in eternal night, simmers at 1,500°C (2,700°F). This extreme environment makes WASP-121b one of the most hostile planets ever observed, and a valuable target for planetary science. Now, using the James Webb Space Telescope's (JWST) Near Infrared Spectrograph instrument, or NIRSpec, a team led by astronomer Thomas Evans-Soma of the University of New Castle in Australia detected a cocktail of molecules in the planet's atmosphere that each carry chemical clues to its dramatic journey. These include water vapor, carbon monoxide, methane and, for the first time ever in a planetary atmosphere, silicon monoxide. Together, they tell a dramatic origin story of WASP-121b written in vapor and stone, described in two papers published Monday (June 2). "Studying the chemistry of ultra hot planets like WASP-121b helps us to understand how gas giant atmospheres work under extreme temperature conditions," Joanna Barstow, a planetary scientist at the Open University in the U.K. and a co-author of both new studies, said in a statement. The findings from both studies suggest WASP-121b did not form where it is today. Instead, it likely originated in a colder, more distant region of its planetary system, similar to the zone between Jupiter and Uranus in our own solar system. There, it would have accumulated methane-rich ices and heavy elements, embedding a distinct chemical signature in its growing atmosphere. Later, gravitational interactions — possibly with other planets — would have sent WASP-121b spiraling inward toward its star. As it moved closer, its supply of icy, oxygen-rich pebbles would've been cut off, but it should have been able to continue gathering carbon-rich gas. This would explain why the world's atmosphere today contains more carbon than oxygen, a chemical imbalance that offers a snapshot of its journey through the disk. To make sense of the complex atmospheric data, the second team of researchers, led by Cyril Gapp of the Max Planck Institute for Astronomy in Germany, created 3D models of the planet's atmosphere, accounting for the vast temperature differences between the day and night sides. Their simulations, described in a paper published in The Astronomical Journal, helped separate signals from different regions of the planet as it orbited, revealing how molecules shift and circulate throughout the orbit. Among the molecules newly detected, the presence of silicon monoxide was particularly revealing, scientists say, as it isn't typically found in the gaseous form they observed. Instead, the researchers suggest this gas was originally locked in solid minerals like quartz within asteroid-size planetesimals that crashed into the young planet. Over time, as the planet grew and spiraled inward toward its star, those materials would have been vaporized and mixed into its atmosphere, according to one of the new papers, published in Nature Astronomy. Related Stories: — Scientists question possible signs of life on exoplanet K2-18b in new study: 'We never saw more than insignificant hints' — Scientists found a possible new dwarf planet — it could spell bad news for Planet 9 fans — Exoplanet 'baby pictures' reveal exomoons possibly taking shape around infant worlds On the cooler "night" side of WASP-121b, the researchers found an abundance of methane gas. This came as a surprise as methane typically breaks down under such heat, the study notes. "Given how hot this planet is, we weren't expecting to see methane on its nightside," study co-author Anjali Piette, who is an assistant professor of astronomy at the University of Birmingham, said in a statement. Its presence suggests methane is being replenished, likely pulled up from deeper, cooler layers of the atmosphere. "This challenges exoplanet dynamical models, which will likely need to be adapted to reproduce the strong vertical mixing we've uncovered on the nightside of WASP-121b," study lead author Thomas Evans-Soma of the University of New Castle in Australia added in another statement.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store