A wild project in Iceland could transform how we forecast volcano eruptions
When you picture a volcano, what do you see? I personally imagine a mountain sticking up into the sky. At the top of that mountain, I see a crater with a fiery hot lake boiling and roiling in it, or lava pouring down a slope like bright red candle wax, or massive clouds of grey ash exploding into the air.
It's all incredible, powerful imagery, but it's also really just the tip of the volcano-berg.
If I were to descend down through my imaginary volcano, moving down through layers and layers of earth, I'd find what might be an even more incredible feature: my volcano's pulsing, fiery furnace of a heart, also known as its 'magma chamber.' This is the reason that hot ash comes bursting up through the surface. It's the original source of my lava and my crater lake. It's where much of the important action in a volcano unfolds — and could hold secrets to help us better predict when a devastating eruption will occur.
The problem is that we know much less about magma chambers like this than we'd like to. We're not even good at depicting them.
'We draw them as red balloons,' says Mike Poland, a geophysicist and scientist-in-charge at the Yellowstone Volcano Observatory. 'They are not. But it's a very difficult thing to represent.'
Magma chambers are so hard to represent because they're so complex. They can be thousands of degrees Fahrenheit and have blends of solid material and hot liquid rock. These chambers have different temperatures in different spots, and different minerals melting at different heats or moving around in different ways. And, making things even more complex, there's a multitude of different gases that might make pressure build up before an eruption.
But if we could better represent magma chambers — and just generally better understand exactly how they work — Poland says we might be able to dramatically improve our understanding of how volcanoes operate, and therefore be better able to anticipate what to expect from an impending eruption. But right now, because these chambers are so hot and so deep underground, it's hard to plumb their secrets.
'We don't have, like, the glass-bottomed volcano where you can just sort of look into and go like, Oh, that's what's going on,' Poland jokes.
But what if we could have a glass-bottomed volcano that we could sort of look into and go like, Oh, that's what's going on? What if we could build, say, a little observatory deep down under the ground, right in the hot little heart of a volcano? It sounds absurd, and yet…
' There's a project in Iceland,' Poland tells me, 'They want to build a magma observatory. They want to drill into a magma chamber and put some monitoring equipment in the hole. … That would give us some idea of what's going on in there.'
The project is called the Krafla Magma Testbed, or KMT, and the researchers working on it think it could revolutionize volcanology — and how we forecast eruptions.
One of the key motivations for building an observatory like this is that volcanology has a prediction problem. On the one hand, volcanoes are much more predictable than, say, earthquakes — they tend to give us some warning signs before they erupt. But on the other hand, it's hard to perfectly interpret those warning signs, which means the predictions volcanologists can make with our existing technology can be both incredibly helpful and frustratingly imprecise.
For example, for the last year or so, a potential eruption has been brewing at Mount Spurr, a volcano near Anchorage, Alaska. Twice in the last 100 years, eruptions from Mount Spurr have rained ash down on the city, clogging up roadways, shutting down the local airport (one of the busiest cargo ports in the world), and settling like a fine dusting of gritty, gray, unmelting snow on cars and lawns and leaves of trees.
People are understandably worried about a repeat performance, and the Alaska Volcano Observatory is monitoring the situation closely.
Matt Haney, the scientist-in-charge at that observatory, told me while he can be sure that the volcano is displaying several key warning signs, he can't be sure exactly what the upcoming volcanic activity might look like — if there will be one eruption or many, exactly how intense they will be, or when they'll occur.
'That is not possible in the current levels of technology that we have,' he said. 'There's no definitive time frame, like, Oh, it's going to do exactly this, like it did in 1992. It's not the precise same playbook.'
Even with 11 seismic stations gathering real-time data about the Alaskan volcano — even with devices measuring how it is changing shape in response to incoming magma, with planes circling in the sky to understand the venting of gases, and with an enormous amount of truly impressive work — these volcanologists still can't give us as clear a picture of the future as we might like them to.
That's tricky enough when you're dealing with the prospect of a clogging and choking coating of volcanic ash, but it gets even more complicated when you're trying to make determinations about people's lives.
'This is the problem. How do you know how big an eruption's going to be?'
Mike Poland, geophysicist and scientist-in-charge at the Yellowstone Volcano Observatory
Look, for example, at the case of Soufrière de Guadeloupe, a volcano on the Caribbean island of Basse-Terre. In the mid-1970s, it started venting steam. That, paired with increased earthquake activity, had people worried that a dramatic eruption might be brewing.
And they had very good reason to worry: In 1902, another Caribbean volcano eruption sent a deadly mix of hot gas and ash and rock careening through a nearby city at 300 miles an hour, killing 27,000 people. So, hoping to avoid a repeat of this devastating event, the governmental authorities decided to go ahead and evacuate. More than 70,000 people left Basse-Terre.
But the subsequent eruption was minor. As one report put it, the 'explosive emission of steam and debris was certainly impressive to those who had the misfortune to view it at close quarters. But from a volcanological point of view, it represented a rather trivial outburst.' If anything, the biggest impact on the volcanic activity was the evacuation itself — it hurt the local economy and disrupted kids' schooling.
Sometimes, though, evacuations are extremely necessary. In 1991, at Mount Pinatubo in the Philippines, volcanologists once again read the volcanic tea leaves — stuff like seismic activity and steam explosions — and predicted a big eruption. Once again, people were evacuated. But this time, the decision to abandon the area saved thousands of lives — the ensuing eruption was one of the biggest in the 20th century.
'This is the problem,' Poland says. 'How do you know how big an eruption's going to be?'
You don't want to evacuate too little, or too late, at the cost of human lives, he says. But equally, you don't want to be the boy who cries wolf, or the volcanologist who cries, 'ERUPTION!'
' It erodes trust in the scientists,' he says.
Volcanology has come a long way since the 1970s, or even the 1990s. Scientists have much more monitoring equipment set up on volcanoes, and they have made better equipment over time. Their ability to make predictions about volcanoes has improved dramatically as a result.
But as the case of Mount Spurr shows, even now — in 2025 — the field still grapples with the same fundamental problem of precision in their predictions.
So how do these predictions get better? How could volcanologists further improve their predictions in order to help people make decisions about how to prepare for eruptions?
Poland has spent a fair amount of time thinking about the answers to this question. He wrote a whole paper about it, in fact. And he thinks that improving volcano forecasting is not just about continuing to improve our monitoring equipment. Instead, he says, what we really need is better information about volcanoes themselves, and the hot molten rocks that power them.
Let's talk about how we currently forecast volcano eruptions. A lot of volcano prediction involves making very informed guesses about what a volcano might do in the future based on what that volcano has done in the past — what Poland calls pattern recognition.
Take, for example, gas emissions or earthquakes. Essentially, he says, researchers will take a lot of very, very precise measurements of those phenomena that will allow them to then say 'Alright. X is happening. And when X happened before, Y happened afterward, so maybe now Y will happen again soon.'
'It's not necessarily based on any special understanding of the physics of volcanic activity or that particular volcano,' Poland says, 'It's more based on…We've seen this movie before, and we know how it's likely to evolve over time.'
This approach has been incredibly useful. It's saved a lot of lives and helped scientists make some really good predictions about how a volcano might behave, broadly. But Poland likes to draw a comparison between this approach and with how we forecast the weather. Because in the past, weather scientists also relied heavily on pattern matching. If the pressure was dropping and it was getting colder, say, they might expect a storm to come through.
But then, weather forecasting went through a kind of revolution. Scientists used satellites and other instruments to collect information about clouds and winds and rain. They collected huge amounts of data about the atmosphere, and people even flew directly into the eyes of phenomena like hurricanes to measure what was happening inside of those storms.
'This really abundant information was then used by modelers…to work out the physics of what's going on,' Poland says.
Weather scientists still use a lot of historical data to inform their understanding of the future (and now, with AI, are actually turning back to their massive bodies of data to try some more advanced pattern recognition), but they have also built really sophisticated models of the physics of the atmosphere that help them make their predictions. And it has paid off: Last year, according to the National Hurricane Center, hurricane forecasters set new records for accuracy in their predictions for the 2024 Atlantic hurricane season.
'We can now forecast, with some degree of accuracy, whether a hurricane will form, how intense it is going to be, where it's going to go,' Poland says. 'Obviously not every forecast is perfect. And that's because our knowledge is still imperfect. But they know enough.'
Poland wants volcanologists to build similar models of the underlying physics of volcanoes, which would mean building models of magma chambers. Scientists have been working on making models like this — and have even been working on applying them to forecasting. But if the weather scientists built their models by flying directly into things like hurricanes and taking measurements, volcano researchers have had a bit of a harder time doing the equivalent for magma chambers. They can't take direct measurements, so they've used seismic and electromagnetic imaging to take the equivalent of X-rays of the Earth, and they've studied places where ancient volcanoes have eroded away, bringing their cooled, frozen magma chambers up to the surface. They've even read the layers of volcanic crystals as though they were tree rings.
This has been helpful, but it's kind of like studying your neighbors by eavesdropping on their conversations through the wall and going through their trash instead of just talking to them directly.
So that's why some researchers are hoping to talk to volcanoes directly — to observe their magma chambers in real time.
In some ways, the dream of a magma observatory started with an accident. Or to be a little more specific, it started with three different accidents in three different countries, each more than a decade ago. In each case, people set out to drill a deep hole into the rock near a volcano, and in each case, they accidentally drilled right down into the magma chamber.
These accidents were a big surprise to the people doing the drilling, but to John Eichelberger, they were a big opportunity.
Eichelberger has been studying volcanoes for around five decades. For much of that time, he's been curious about magma chambers. He thinks that knowing more about them could not only help us forecast volcanoes better, but also maybe tap into them for geothermal power. Unfortunately, he says, for a long time, it was difficult to find a way to drill into magma chambers and find out more about them, because people were not sure what would happen if you did. What if you triggered an eruption?
'Really the only way [drilling down to a magma chamber] could happen was by serendipity,' Eichelberger says.
Serendipity like these three drilling accidents. They provided some real-world examples of what would happen if you drilled down to a magma chamber. And the answer was, it turns out, not all that much. In each of these three cases, the drilling companies hit the magma chamber and instead of like hot rock shooting out of their hole in a hot plume of fire, the magma basically climbed a little ways up the hole, and then cooled off into a plug of dark obsidian glass.
This was very good news for Eichelberger. As he remembers it, he wound up meeting someone from a power company that was involved in one of these accidents. That representative let him know that they would be open to letting Eichelberger and other researchers do some more research near their power plant in the Krafla volcanic region of Iceland. And so, in 2014, Eichelberger gathered researchers together for a consortium – including a researcher named Yan Lavallée, now at Ludwig Maximilian University of Munich.
'Fifty or 60 of us spent the best part of a week together browsing ideas as to…what could we learn if we were to do this?' Lavallée syas, 'What could we learn if we were to drill back in the magma?'
This was the start of the dream of KMT: The Krafla Magma Testbed, named for the volcanic system in Iceland. It's a dream that Eichelberger, Lavallée, and their collaborators are still trying to get funded, but they have a clear idea of how they'd make it a reality.
'First, we're going to install a drill rig at the Earth's surface, and we're going to start drilling,' Lavallée tells me.
As they drill down, things will get hotter and hotter. They will pump fluid through, which will cool things down. Eventually, as they start to approach the magma of the magma chamber, the fluid will even start to cool down a little bit of that magma, too.
'It will vitrify to a glass,' Lavallée says. This glass will likely not be transparent like a window. Instead, it will be obsidian — dark black and full of minerals.
The researchers will then continue to keep things cool while they carve into that black glass, creating something like a pocket within it. Once that pocket is made, they hope to drop measuring devices into it. Lavallée works with tools in his lab that are made of the same kinds of heavy-duty materials that we put into things like jet engines and other materials that can withstand extremely high temperatures.
Once everything's in place, they will stop cooling things down. Then the heat of the surrounding molten rock should start warming the obsidian of the glass pocket back up again slowly, until it melts back into magma and flows back around the instruments, submerging them fully in the magma of the chamber.
Then, hopefully, the researchers will finally have their observatory: a set of measuring devices feeding them real-time data about an active magma chamber.
If this first project succeeds, then Eichelberger and Lavallée are brimming with ideas for further drilling projects that could help them tease out more information about volcanoes. They both hope this research could help the world tap into volcanoes as a source of power, but also that it could help with forecasting — to help us build the models of volcanoes' hearts that will give us the tools to predict their behavior as effectively as we predict hurricanes.
And overall, Lavallée thinks that if this dream of theirs succeeds, it might revolutionize volcanology.
'I don't think we can really fully conceive how it's going to change things,' he says.
Obviously, Lavallée has a clear reason to think this way, but when I asked Poland, who has no involvement with this project, what he thought, he was also pretty enthusiastic.
'I am excited to hear what they can come up with,' Poland said, 'I mean, you go into a magma chamber, you're going to learn some things.'

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
11 hours ago
- Yahoo
The sun: Facts about the bright star at the center of the solar system
When you buy through links on our articles, Future and its syndication partners may earn a commission. Quick facts about the sun How big it is: 865,000 miles (1.392 million kilometers) across How far away it is: 93 million miles (150 million km) What type of star it is: A yellow dwarf star The sun is the star at the center of our solar system. It's the largest, brightest and most massive object in the solar system, and it provides the light and heat that life on Earth depends on. Powered by a process called nuclear fusion, the sun can get hotter than 27 million degrees Fahrenheit (15 million degrees Celsius). The sun has been around for over 4 billion years, but one day, it will run out of fuel. Read on to learn more about what our local star is made of, how it formed and what will happen when it dies. Over 1 million Earths could fit inside the sun. The sun may look yellow from Earth, but it actually releases every color of light, meaning its true color is white. The sun is unique in that it's the only star in our solar system. Up to 85% of stars have at least one companion star. The sun contains over 99% of the mass of our entire solar system. Like Earth, the sun also rotates on its axis. Each rotation takes about 27 Earth days. The sun is a ball of gas and plasma made mostly of hydrogen. The sun uses these vast stores of hydrogen to generate the heat and light that sustain our planet. It does this through a process called nuclear fusion, in which two hydrogen atoms combine to create a different element, helium. The sun is about three-quarters hydrogen and one-quarter helium, with tiny amounts of metals. The larger a star is, the more rapidly it burns through its hydrogen. Some of the largest known stars — such as those with masses 40 times that of the sun — will live just 1 million years. By contrast, the sun will have a lifetime of around 10 billion years. Different parts of the sun reach different temperatures. The sun's core gets as hot as 27 million F (15 million C). The part of the sun we can see from Earth is called the photosphere, which is the "surface" of the huge ball of plasma. The temperature of the photosphere is about 9,900 F (5,500 C). Above the photosphere is the loose outer atmosphere of the sun, known as the corona. We can't see the corona from Earth under ordinary conditions, though it can be photographed during a total solar eclipse. The sun formed around 4.5 billion years ago. At that time, the area of the Milky Way galaxy that would become the solar system was a dense cloud of gas — the leftovers of an earlier generation of stars. The densest region of this cloud collapsed and created a seed, called a protostar, that would become the sun. As this young protostar grew, planets, moons and asteroids formed from the remaining raw material, and then began circling around the growing sun as they were sucked into orbit by the star's powerful gravity. At the heart of the sun, this same force sparked nuclear fusion. The heat and light from this nuclear reaction allowed life on Earth to evolve and prosper. However, this reaction will eventually lead to the sun's death when it runs out of nuclear fuel. The sun is around halfway through its lifetime. Our star is locked in a constant battle as outward pressure from nuclear fusion fights the inward pull of gravity. When the sun runs out of hydrogen in about 5 billion years, the inward force of gravity will win. The center of the sun will collapse, compressing into a dense core. Helium will start fusing into even denser elements, like carbon, nitrogen and oxygen. While this happens, the heat generated by the fusing of these elements will push the sun's outer shell to swell. This will be bad news for the inner planets of the solar system — including Earth. As the sun becomes a type of star called a red giant, its outer shell will expand to the orbit of Mars, gobbling up Mercury, Venus, Earth and Mars. But the red-giant phase is not when the sun will die. The outer layers that swell during the red-giant phase will become a shell of gas called a surrounding planetary nebula. This shell will be shed after approximately 1 billion years. This will expose the star's smoldering core, which, by this point, will be a dense ball called a white dwarf. As a white dwarf, the sun will dim. The material from the planetary nebula will spread out into the galaxy and form the building blocks of the next generation of stars and planets. Image 1 of 5 Space agencies have launched many spacecraft that help us observe and gather data about the sun. Pictured here is an artist's concept of the sun being observed by NASA's Parker Solar Probe. Image 2 of 5 The red giant star Camelopardalis. The sun will eventually become a red giant, and as it expands, it will engulf its nearest planets, including Earth. Image 3 of 5 Sunspots are darker, cooler areas that temporarily appear on the sun. They're caused by changes in the sun's magnetic field. Image 4 of 5 Solar storms happen when the sun releases flares of energy and particles. Image 5 of 5 Auroras on Earth happen when charged particles from the sun interact with our planet's atmosphere. Is Earth getting closer to the sun, or farther away? Where on Earth does the sun rise first? What color is the sun?
Yahoo
21 hours ago
- Yahoo
Lake Natron: The caustic, blood-red lake in Tanzania that turns animals to 'stone'
When you buy through links on our articles, Future and its syndication partners may earn a commission. QUICK FACTS Name: Lake Natron Location: Northern Tanzania Coordinates: -2.332009081285983, 36.03373896004504 Why it's incredible: The lake is so alkaline, it burns the skin and eyes of most animals and turns some to "stone." Lake Natron has a chemical makeup that is so harsh, it is uninhabitable for most creatures. It is a "soda" lake, meaning it has high levels of dissolved sodium and carbonate. Due to this high concentration of salts and minerals, the lake's pH can reach 10.5, which is almost as caustic as ammonia solution — and animals that die on the shores of Lake Natron are preserved as calcified mummies as a result. Lake Natron sits along the East African Rift System, a divergent tectonic plate boundary that is tearing apart the African Plate. This geology means that Lake Natron is shaped by volcanic processes, which produce large amounts of sodium carbonate and calcium carbonate. These salts and other minerals trickle down into the lake from surrounding hills and enter the water from below via hot springs, Live Science previously reported. The lake does not drain into any river or sea, so the chemical concentration stays high year-round. Few animals can survive a salt level and pH as high as Lake Natron's, and the water can severely burn the skin and eyes of creatures that try to take a sip or dip. But animals that have adapted to the conditions, including lesser flamingos (Phoeniconaias minor) and tilapia, thrive in and around the lake. In fact, Lake Natron is the world's most important breeding site for lesser flamingos, with most of East Africa's 1.5 million to 2.5 million lesser flamingos — which represent around 75% of the global population of the species — hatching at the lake, according to the Tanzania Wildlife Management Authority. Lesser flamingos' legs have tough skin and scales that prevent burns from the water. These birds build nests on islands that form in the lake during the dry season, Live Science previously reported, and their babies are safe from most predators thanks to the deadly conditions. Related: Kilimanjaro's giant groundsels: The strange plants that thrive on Africa's tallest mountain In addition to being extremely alkaline, Lake Natron is so shallow that its water temperature can reach a scalding 140 degrees Fahrenheit (60 degrees Celsius) during the hottest times of the year, according to NASA's Earth Observatory. The lake is 1.6 feet (0.5 meters) deep and 9 miles (15 kilometers) wide, but it shrinks and expands depending on the weather, with less rainfall and river input during the dry season leading it to contract (and vice versa). When the lake shrinks, microorganisms that feast on its salts multiply. Haloarchaea (salt-loving organisms that lack a nucleus) and cyanobacteria (blue-green algae) can color the lake different shades of red thanks to pigments in their cells. The same pigments give lesser flamingos their pink hue, according to NASA's Earth Observatory, because these flamingos almost exclusively eat blue-green algae. Lake Natron made headlines in 2013, when photographer Nick Brandt's images of "stone" animals on the lake's shores were published in the book "Across the Ravaged Land" (Abrams Books, 2013). The pictures showed carcasses of birds and bats that had died on the shores of the lake and were preserved by its sodium carbonate. Brandt positioned them on branches and on the water to look "alive again in death," he wrote in the book. MORE INCREDIBLE PLACES —Last Chance Lake: The unusual 'soda lake' with conditions that may have given rise to life on Earth —Hot Tub of Despair: The deadly ocean pool that traps and pickles creatures that fall in —Jellyfish Lake: Palau's saltwater pool with a toxic bottom and surface waters brimming with millions of jellyfish "I unexpectedly found the creatures — all manner of birds and bats — washed up along the shoreline of Lake Natron," Brandt wrote. "No one knows for certain exactly how they die." Birds pictured in the book include a dove and a fish eagle. These birds do not feed and breed at Lake Natron, but they live in the salt marshes and freshwater wetlands that make up the surrounding landscape. These ecosystems also host greater flamingos, pelicans, ostriches, buffalo, wildebeest and many other creatures, according to the Tanzania Wildlife Management Authority. Discover more incredible places, where we highlight the fantastic history and science behind some of the most dramatic landscapes on Earth.
Yahoo
a day ago
- Yahoo
Powerful laser creates super ceramics in minutes that withstand 3,632°F
Ultra-high temperature ceramics are materials capable of withstanding temperatures exceeding 2,000 degrees Celsius (3,632 degrees Fahrenheit). Because they can endure such high temperatures, these materials are essential for nuclear reactor parts, spacecraft heat shields, and hypersonic vehicles. However, their manufacturing process is time-consuming and energy-intensive. It requires massive furnaces that can reach at least 2,200 degrees Celsius (3992 degrees Fahrenheit). Using lasers, researchers from North Carolina State University have found a way to produce ultra-high temperature ceramics within minutes. Using a 120-watt laser, the new method converts a liquid polymer precursor straight into hafnium carbide (HfC), one of the most heat-resistant substances available. The process begins in an inert environment, like a vacuum chamber filled with argon. Here, a laser is applied to a liquid polymer precursor. This solution contains the complete chemical mix required to form the final ceramic: hafnium and carbon. When the laser hits the precursor, the thermal energy from the laser converts the liquid polymer into a solid, which then directly transforms into the ceramic. The entire process, known as sintering, happens so rapidly that the researchers consider it a single-step process. This process can be used in two different ways to engineer the ceramic. The first way is to apply the liquid precursor as a coating to existing objects or materials, after which the sintering can be performed. This creates protective ceramic layers without exposing the entire structure to furnace heat. By preserving the integrity of the structure, this method holds promise for materials that might be sensitive to the furnace heat. Alternatively, the method can be integrated with 3D printing systems, similar to stereolithography. The laser is mounted on a movable platform that is placed on a vat containing the liquid precursor. The laser traces the design in the precursor layer by layer, gradually building a 3D ceramic object. This approach offers precision and control over the final design. The researchers used their laser sintering method to produce pure HfC as a proof-of-concept. They discovered that their method delivers a higher yield than conventional techniques. The sintering laser method converted at least 50% of the precursor mass into ceramic, compared to 20-40% for traditional methods. Greater yield results in reduced waste and improved resource efficiency. They also observed excellent bonding of HfC coatings on carbon-fiber reinforced carbon composites. The coatings covered the surface uniformly and bonded tightly to the structure below. "This is the first time we know of where someone was able to create HfC of this quality from a liquid polymer precursor," said Prof. Cheryl Xu, co-author of the paper, in a press release. This method is more portable than traditional furnace-based techniques, although it still requires a vacuum chamber. The findings of the study are published in the Journal of the American Ceramic Society.