A one-hour mouth swab may make IVF more successful—here's what hopeful parents should know
A recent study from Lund University has found that a quick, non-invasive mouth swab could help doctors personalize hormone treatments for IVF, potentially boosting success rates by up to 38%. That could mean 110 more babies born for every 1,000 women treated—offering not just data, but dreams made real.
IVF, or in vitro fertilization, involves stimulating the ovaries to produce eggs, which are then retrieved, fertilized, and implanted into the uterus. It sounds straightforward—but anyone who has walked this road knows how complex it really is. One of the biggest challenges? Finding the right hormone treatment for each woman's unique biology.
Hormone treatments are used to help eggs mature before retrieval. But not all women respond the same way. And when the hormones aren't the right fit, the chances of a successful pregnancy drop, and side effects rise.
According to the American Society for Reproductive Medicine, while IVF births are on the rise in the U.S.—with more than 95,000 babies born via IVF in 2023—up to 75% of IVF cycles still end in failure. That's a staggering statistic, and one that researchers have been working to change.
The Lund University study looked at the genetic data of 1,466 women undergoing IVF at Skåne University Hospital in Malmö, Sweden. They discovered that a woman's genes can actually predict how well she'll respond to different hormone treatments.
One gene in particular—the FSHR gene, which plays a key role in egg maturation—was found to influence outcomes. Women with a certain variation in this gene did better with biological hormones, while those without it had better results with synthetic ones.
This led researchers to create a test: a simple mouth swab that analyzes these genetic markers and gives a clear result in just one hour. The test uses colors—pink or yellow—to indicate the most suitable hormone treatment.
Related: This woman's reaction to her friend's pregnancy reveal sheds light on the hidden grief of infertility
For families struggling with infertility, this development could be life-changing. Matching treatment to genetics helped increase IVF success by 38%. That's not just a number—it's more babies, more happy endings, and fewer cycles of emotional and physical strain.
'Our hope is that this will reduce the risk of suffering for women, increase the number of successful treatments and cut costs for taxpayers,' said Yvonne Lundberg Giwercman, CEO of the company developing the test.
Related: Why we need National Infertility Awareness Week more than ever
If you're considering IVF—or supporting someone who is—this new swab test might be a key part of the journey in the near future. It's expected to be available by 2026, and could become a standard part of IVF preparation, helping doctors offer more tailored and compassionate care.
It's a step forward that doesn't just bring new science—it brings new hope. And for every parent holding on to the dream of a child, that hope means everything.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
21-06-2025
- Yahoo
Scientists say a tiny brown moth navigates 600 miles using stars — just like humans and birds
(CNN) — Each year, a tiny species in Australia makes a grueling 620-mile (1,000-kilometer) nighttime migration, and it's pulling off the feat in a way only humans and migratory birds have been known to do, a new study has found. Bogong moths looking to escape the heat travel in the spring from all over southeastern Australia to cool caves in the Australian Alps, where they huddle in a dormant state. The insects then fly all the way back in the fall to mate and die. Researchers replicated the conditions of this astonishing journey in the lab and discovered a key tool the moths used to find their way: the starry night sky. 'It is an act of true navigation,' said Eric Warrant, head of the Division of Sensory Biology at Lund University in Sweden, and a coauthor of the study published Wednesday in the journal Nature. 'They're able to use the stars as a compass to find a specific geographic direction to navigate, and this is a first for invertebrates.' Stars are not the only navigational cue the insects use to reach their destination. They can also detect Earth's magnetic field, according to evidence found by previous research conducted by Warrant and some of his colleagues from the new study. By using two cues, the moths have a backup in case either system fails — for example, if there is a magnetic anomaly or the night sky is cloudy. 'With a very small brain, a very small nervous system, (the moths) are able to harness two relatively complex cues and not only detect them, but also use them to work out where to go,' Warrant added. 'And I think that just adds a piece to the growing consensus that the insects have quite remarkable abilities and are truly amazing creatures.' Native to Australia, the Bogong moth, or Agrotis infusa, is entirely nocturnal and has an adult wingspan of about 2 inches (5 centimeters). 'They're a very nondescript little brown moth, that people would not necessarily distinguish from any other little brown moth,' Warrant said. Even though the moths normally migrate in the billions, their numbers have crashed in recent years, and the species is now endangered and appears on the International Union for Conservation of Nature's Red List. After discovering about five years ago that the insects could sense Earth's magnetic field, Warrant said he suspected that they might also be using visual cues to support their navigation. To test the theory, Warrant — who is from Australia — set up a lab with his colleagues in his own house, about 93 miles (150 kilometers) north of the moths' final destination in the Australian Alps. 'We captured the moths using a light trap, we brought them back to the lab, and then we glued a very thin rod on their back, made out of tungsten, which is nonmagnetic. Once you've done that, you can hold that little rod between your fingers, and the moth will fly very vigorously on the end of that tether,' he said. The researchers then coupled that rod to another one, also made of tungsten but much longer, allowing each moth to fly in any direction while an optical sensor detected exactly where the insect was going, relative to north, every five seconds. The experiment was set up in an enclosed, cylindrical 'moth arena,' with an image of the southern night sky projected on the roof, replicating exactly what was outside the lab on the day and time of the experiment. 'What we found is that moth after moth flew in their inherited migratory direction,' Warrant said. 'In other words, the direction they should fly in order to reach the caves in spring, which is a southwards direction for the moths we caught, or northwards away from the caves in autumn, which is very interesting.' Crucially, the effect of Earth's magnetic field was removed from the arena, via a device called a Helmholtz coil, which created a 'magnetic vacuum' so that the moths could only use visual cues. 'The moths couldn't rely on the Earth's magnetic field to do this task,' Warrant said. 'They had to rely on the stars. And they did.' About 400 moths were captured for this behavioral experiment and safely released afterward. The researchers collected a smaller sample of about 50 moths to try to understand the neural mechanism they used to navigate, which involved sticking electrodes in the insects' brains and resulted in death. 'A little moth can't see many stars, because its eye has a pupil which is only about 1/10th of the width of our own pupil at night,' Warrant said. 'But it turns out, because of the optics of the eye, they're able to see that dim, nocturnal world about 15 times more brightly than we do, which is fantastic, because they would be able to see the Milky Way much more vividly.' Warrant said he believes the insects are using this enhanced brightness as a visual compass to keep heading in the right direction. Apart from birds and humans, only two other animals navigate in a similar way, but with crucial differences from the moths, according to Warrant. The North American monarch butterfly also migrates over long distances using a single star as a compass, but that star is the sun, as the insect only flies during daytime. And some dung beetles use the Milky Way to find their way at night, but for the much simpler task of going in a straight line over a short distance, which does not really compare with the moths' long journey to a highly specific destination. What makes the Bogong moth's skill even more extraordinary is that the insect only makes this trip once in its life, so its ability to navigate must be innate. 'Their parents have been dead for three months, so nobody's shown them where to go,' Warrant said. 'They just emerge from the soil in spring in some far-flung area of southeastern Australia, and they just simply know where to go. It's totally amazing.' Warrant and his colleagues have not only discovered an entirely new compass mechanism in a migrating insect, but they have opened up an exciting avenue of research, as there are still many questions remaining about how the moths detect and use the information from their star compass, according to Jason Chapman, an associate professor at the Centre for Ecology and Conservation of the UK's University of Exeter. Chapman was not involved in the new research. 'Many questions remain,' he added via email, 'such as how the Bogong moths detect the information, how they use it to determine the appropriate direction in which to fly through the course of the night and between seasons, how they integrate their star and magnetic compasses, and how widespread these mechanisms may (or may not) be among other migratory moths and other nocturnal insects.' The findings are really exciting and add to scientists' knowledge about the ways that insects travel vast distances across continents, said Jane Hill, a professor of ecology at the University of York in the UK, who also was not involved with the study. 'They are able to navigate in the appropriate direction even though the stars move each night across the sky,' she said. 'This feat of insect migration is even more amazing given that different generations make the journey each year and there are no moths from previous generations to show the way. Sign up for CNN's Wonder Theory science newsletter. Explore the universe with news on fascinating discoveries, scientific advancements and more.


CNN
20-06-2025
- CNN
Tiny brown moth navigates 600 miles using stars — just like humans and birds
(CNN) — Each year, a tiny species in Australia makes a grueling 620-mile (1,000-kilometer) nighttime migration, and it's pulling off the feat in a way only humans and migratory birds have been known to do, a new study has found. Bogong moths looking to escape the heat travel in the spring from all over southeastern Australia to cool caves in the Australian Alps, where they huddle in a dormant state. The insects then fly all the way back in the fall to mate and die. Researchers replicated the conditions of this astonishing journey in the lab and discovered a key tool the moths used to find their way: the starry night sky. 'It is an act of true navigation,' said Eric Warrant, head of the Division of Sensory Biology at Lund University in Sweden, and a coauthor of the study published Wednesday in the journal Nature. 'They're able to use the stars as a compass to find a specific geographic direction to navigate, and this is a first for invertebrates.' Stars are not the only navigational cue the insects use to reach their destination. They can also detect Earth's magnetic field, according to evidence found by previous research conducted by Warrant and some of his colleagues from the new study. By using two cues, the moths have a backup in case either system fails — for example, if there is a magnetic anomaly or the night sky is cloudy. 'With a very small brain, a very small nervous system, (the moths) are able to harness two relatively complex cues and not only detect them, but also use them to work out where to go,' Warrant added. 'And I think that just adds a piece to the growing consensus that the insects have quite remarkable abilities and are truly amazing creatures.' Native to Australia, the Bogong moth, or Agrotis infusa, is entirely nocturnal and has an adult wingspan of about 2 inches (5 centimeters). 'They're a very nondescript little brown moth, that people would not necessarily distinguish from any other little brown moth,' Warrant said. Even though the moths normally migrate in the billions, their numbers have crashed in recent years, and the species is now endangered and appears on the International Union for Conservation of Nature's Red List. After discovering about five years ago that the insects could sense Earth's magnetic field, Warrant said he suspected that they might also be using visual cues to support their navigation. To test the theory, Warrant — who is from Australia — set up a lab with his colleagues in his own house, about 93 miles (150 kilometers) north of the moths' final destination in the Australian Alps. 'We captured the moths using a light trap, we brought them back to the lab, and then we glued a very thin rod on their back, made out of tungsten, which is nonmagnetic. Once you've done that, you can hold that little rod between your fingers, and the moth will fly very vigorously on the end of that tether,' he said. The researchers then coupled that rod to another one, also made of tungsten but much longer, allowing each moth to fly in any direction while an optical sensor detected exactly where the insect was going, relative to north, every five seconds. The experiment was set up in an enclosed, cylindrical 'moth arena,' with an image of the southern night sky projected on the roof, replicating exactly what was outside the lab on the day and time of the experiment. 'What we found is that moth after moth flew in their inherited migratory direction,' Warrant said. 'In other words, the direction they should fly in order to reach the caves in spring, which is a southwards direction for the moths we caught, or northwards away from the caves in autumn, which is very interesting.' Crucially, the effect of Earth's magnetic field was removed from the arena, via a device called a Helmholtz coil, which created a 'magnetic vacuum' so that the moths could only use visual cues. 'The moths couldn't rely on the Earth's magnetic field to do this task,' Warrant said. 'They had to rely on the stars. And they did.' About 400 moths were captured for this behavioral experiment and safely released afterward. The researchers collected a smaller sample of about 50 moths to try to understand the neural mechanism they used to navigate, which involved sticking electrodes in the insects' brains and resulted in death. 'A little moth can't see many stars, because its eye has a pupil which is only about 1/10th of the width of our own pupil at night,' Warrant said. 'But it turns out, because of the optics of the eye, they're able to see that dim, nocturnal world about 15 times more brightly than we do, which is fantastic, because they would be able to see the Milky Way much more vividly.' Warrant said he believes the insects are using this enhanced brightness as a visual compass to keep heading in the right direction. Apart from birds and humans, only two other animals navigate in a similar way, but with crucial differences from the moths, according to Warrant. The North American monarch butterfly also migrates over long distances using a single star as a compass, but that star is the sun, as the insect only flies during daytime. And some dung beetles use the Milky Way to find their way at night, but for the much simpler task of going in a straight line over a short distance, which does not really compare with the moths' long journey to a highly specific destination. What makes the Bogong moth's skill even more extraordinary is that the insect only makes this trip once in its life, so its ability to navigate must be innate. 'Their parents have been dead for three months, so nobody's shown them where to go,' Warrant said. 'They just emerge from the soil in spring in some far-flung area of southeastern Australia, and they just simply know where to go. It's totally amazing.' Warrant and his colleagues have not only discovered an entirely new compass mechanism in a migrating insect, but they have opened up an exciting avenue of research, as there are still many questions remaining about how the moths detect and use the information from their star compass, according to Jason Chapman, an associate professor at the Centre for Ecology and Conservation of the UK's University of Exeter. Chapman was not involved in the new research. 'Many questions remain,' he added via email, 'such as how the Bogong moths detect the information, how they use it to determine the appropriate direction in which to fly through the course of the night and between seasons, how they integrate their star and magnetic compasses, and how widespread these mechanisms may (or may not) be among other migratory moths and other nocturnal insects.' The findings are really exciting and add to scientists' knowledge about the ways that insects travel vast distances across continents, said Jane Hill, a professor of ecology at the University of York in the UK, who also was not involved with the study. 'They are able to navigate in the appropriate direction even though the stars move each night across the sky,' she said. 'This feat of insect migration is even more amazing given that different generations make the journey each year and there are no moths from previous generations to show the way.


CNN
20-06-2025
- CNN
Tiny brown moth navigates 600 miles using stars — just like humans and birds
(CNN) — Each year, a tiny species in Australia makes a grueling 620-mile (1,000-kilometer) nighttime migration, and it's pulling off the feat in a way only humans and migratory birds have been known to do, a new study has found. Bogong moths looking to escape the heat travel in the spring from all over southeastern Australia to cool caves in the Australian Alps, where they huddle in a dormant state. The insects then fly all the way back in the fall to mate and die. Researchers replicated the conditions of this astonishing journey in the lab and discovered a key tool the moths used to find their way: the starry night sky. 'It is an act of true navigation,' said Eric Warrant, head of the Division of Sensory Biology at Lund University in Sweden, and a coauthor of the study published Wednesday in the journal Nature. 'They're able to use the stars as a compass to find a specific geographic direction to navigate, and this is a first for invertebrates.' Stars are not the only navigational cue the insects use to reach their destination. They can also detect Earth's magnetic field, according to evidence found by previous research conducted by Warrant and some of his colleagues from the new study. By using two cues, the moths have a backup in case either system fails — for example, if there is a magnetic anomaly or the night sky is cloudy. 'With a very small brain, a very small nervous system, (the moths) are able to harness two relatively complex cues and not only detect them, but also use them to work out where to go,' Warrant added. 'And I think that just adds a piece to the growing consensus that the insects have quite remarkable abilities and are truly amazing creatures.' Native to Australia, the Bogong moth, or Agrotis infusa, is entirely nocturnal and has an adult wingspan of about 2 inches (5 centimeters). 'They're a very nondescript little brown moth, that people would not necessarily distinguish from any other little brown moth,' Warrant said. Even though the moths normally migrate in the billions, their numbers have crashed in recent years, and the species is now endangered and appears on the International Union for Conservation of Nature's Red List. After discovering about five years ago that the insects could sense Earth's magnetic field, Warrant said he suspected that they might also be using visual cues to support their navigation. To test the theory, Warrant — who is from Australia — set up a lab with his colleagues in his own house, about 93 miles (150 kilometers) north of the moths' final destination in the Australian Alps. 'We captured the moths using a light trap, we brought them back to the lab, and then we glued a very thin rod on their back, made out of tungsten, which is nonmagnetic. Once you've done that, you can hold that little rod between your fingers, and the moth will fly very vigorously on the end of that tether,' he said. The researchers then coupled that rod to another one, also made of tungsten but much longer, allowing each moth to fly in any direction while an optical sensor detected exactly where the insect was going, relative to north, every five seconds. The experiment was set up in an enclosed, cylindrical 'moth arena,' with an image of the southern night sky projected on the roof, replicating exactly what was outside the lab on the day and time of the experiment. 'What we found is that moth after moth flew in their inherited migratory direction,' Warrant said. 'In other words, the direction they should fly in order to reach the caves in spring, which is a southwards direction for the moths we caught, or northwards away from the caves in autumn, which is very interesting.' Crucially, the effect of Earth's magnetic field was removed from the arena, via a device called a Helmholtz coil, which created a 'magnetic vacuum' so that the moths could only use visual cues. 'The moths couldn't rely on the Earth's magnetic field to do this task,' Warrant said. 'They had to rely on the stars. And they did.' About 400 moths were captured for this behavioral experiment and safely released afterward. The researchers collected a smaller sample of about 50 moths to try to understand the neural mechanism they used to navigate, which involved sticking electrodes in the insects' brains and resulted in death. 'A little moth can't see many stars, because its eye has a pupil which is only about 1/10th of the width of our own pupil at night,' Warrant said. 'But it turns out, because of the optics of the eye, they're able to see that dim, nocturnal world about 15 times more brightly than we do, which is fantastic, because they would be able to see the Milky Way much more vividly.' Warrant said he believes the insects are using this enhanced brightness as a visual compass to keep heading in the right direction. Apart from birds and humans, only two other animals navigate in a similar way, but with crucial differences from the moths, according to Warrant. The North American monarch butterfly also migrates over long distances using a single star as a compass, but that star is the sun, as the insect only flies during daytime. And some dung beetles use the Milky Way to find their way at night, but for the much simpler task of going in a straight line over a short distance, which does not really compare with the moths' long journey to a highly specific destination. What makes the Bogong moth's skill even more extraordinary is that the insect only makes this trip once in its life, so its ability to navigate must be innate. 'Their parents have been dead for three months, so nobody's shown them where to go,' Warrant said. 'They just emerge from the soil in spring in some far-flung area of southeastern Australia, and they just simply know where to go. It's totally amazing.' Warrant and his colleagues have not only discovered an entirely new compass mechanism in a migrating insect, but they have opened up an exciting avenue of research, as there are still many questions remaining about how the moths detect and use the information from their star compass, according to Jason Chapman, an associate professor at the Centre for Ecology and Conservation of the UK's University of Exeter. Chapman was not involved in the new research. 'Many questions remain,' he added via email, 'such as how the Bogong moths detect the information, how they use it to determine the appropriate direction in which to fly through the course of the night and between seasons, how they integrate their star and magnetic compasses, and how widespread these mechanisms may (or may not) be among other migratory moths and other nocturnal insects.' The findings are really exciting and add to scientists' knowledge about the ways that insects travel vast distances across continents, said Jane Hill, a professor of ecology at the University of York in the UK, who also was not involved with the study. 'They are able to navigate in the appropriate direction even though the stars move each night across the sky,' she said. 'This feat of insect migration is even more amazing given that different generations make the journey each year and there are no moths from previous generations to show the way.