logo
'Toxin-Free Gold Rush Begins': Breakthrough Method Extracts Precious Metals From Ore and E-Waste Without Using Deadly Chemicals

'Toxin-Free Gold Rush Begins': Breakthrough Method Extracts Precious Metals From Ore and E-Waste Without Using Deadly Chemicals

IN A NUTSHELL 🌟 Researchers at Flinders University have developed a toxin-free method for gold extraction from ore and electronic waste.
have developed a toxin-free method for gold extraction from ore and electronic waste. ♻️ The innovative method uses trichloroisocyanuric acid to dissolve gold, offering a safer alternative to traditional toxic chemicals.
to dissolve gold, offering a safer alternative to traditional toxic chemicals. 🌍 By collaborating internationally, the team aims to tackle the growing issue of e-waste and support a circular economy.
and support a circular economy. 🔬 The findings, published in Nature Sustainability, highlight a significant step towards sustainable resource management and environmental protection.
Gold has long been a prized element, not just for its beauty and rarity, but for its critical role in various industries such as electronics, medicine, and aerospace. As the demand for gold continues to rise, traditional extraction methods have posed significant environmental and health risks due to their reliance on toxic chemicals. However, a groundbreaking study by researchers at Flinders University in Australia promises to revolutionize the way we recover gold. By introducing a toxin-free method that efficiently extracts gold from both ore and e-waste, this innovative approach could significantly reduce the ecological footprint of gold mining. The Innovative Gold Recovery Method
The pursuit of sustainable gold extraction has led researchers to develop a novel method that stands in stark contrast to traditional techniques. Historically, gold extraction has depended on toxic substances like cyanide and mercury. These chemicals, while effective, have caused widespread environmental harm, contaminating water sources and posing severe health risks to both humans and wildlife. The new method developed by the interdisciplinary team at Flinders University utilizes a harmless compound known as trichloroisocyanuric acid, commonly used in water treatment processes.
When activated by saltwater, this compound dissolves gold effectively, offering a much safer alternative to conventional methods. The dissolved gold is then selectively captured by a specialized sulfur-rich polymer, which the team designed specifically for this purpose. This polymer not only binds the gold but also allows for its recovery, ensuring that the polymer can be recycled and reused in future extraction processes. This sustainable approach is further enhanced by the use of UV light to create the polymer, minimizing the environmental impact of gold recovery.
'Staggering 20% recycled cathode material goal': Panasonic's bold leap towards the greenest lithium EV batteries ever created Sustainable Solution to Tackle E-Waste
Electronic waste, or e-waste, is an ever-growing problem worldwide, with millions of tons generated each year. These discarded electronics contain valuable metals like gold, but traditional recycling efforts have struggled to keep pace with the increasing volume. The innovative method developed by the Flinders University team offers a promising solution to this challenge. By partnering with experts in the US and Peru, the researchers have tested their method on various types of electronic waste, including CPU units and RAM cards.
This collaboration aims to provide safer alternatives for small-scale miners who often rely on mercury for gold extraction. The new method not only addresses the environmental concerns associated with traditional mining but also supports a circular economy by enabling the recovery and reuse of valuable metals from e-waste. The findings, published in the journal Nature Sustainability, highlight the potential of this technique to transform waste management and resource utilization on a global scale.
'Soundwaves Turn Trash to Power': Revolutionary Tech Revives Dead Fuel Cells Into Clean Energy Gold Using Sonic Force Collaborative Efforts and Global Impact
The success of the Flinders University study is a testament to the power of interdisciplinary and international collaboration. By combining expertise from various fields and regions, the team has developed a method that could set a new standard for gold recovery worldwide. The partnership with experts from different countries not only validates the effectiveness of the method on a global scale but also paves the way for its adoption in diverse mining and recycling contexts.
The implications of this research extend beyond gold recovery. By demonstrating a viable, toxin-free extraction method, the study could inspire similar innovations for other metals and materials. As the world grapples with the challenges of resource scarcity and environmental degradation, such breakthroughs are crucial for building a more sustainable and resilient future.
Porsche Will Crush Its Old EVs to Give Birth to Faster, Greener Monsters Than Ever Before Future Directions and Potential Challenges
While the new gold extraction method holds great promise, several challenges remain. Scaling up the process for widespread industrial use will require further research and development. Ensuring the economic viability of the method is also essential for its adoption by industries and small-scale miners worldwide. Additionally, navigating the regulatory landscape and addressing potential logistical issues will be critical for the successful implementation of this technology.
Despite these challenges, the potential benefits of the method are undeniable. By reducing the environmental impact of gold mining and promoting the efficient recycling of e-waste, this innovation could play a significant role in achieving global sustainability goals. As researchers continue to refine and expand upon their findings, the question remains: how will industries and governments respond to this opportunity to revolutionize gold recovery and resource management?
Our author used artificial intelligence to enhance this article.
Did you like it? 4.5/5 (27)
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

"Watched cracked metal-like plastic mend itself": ATSP's Heat-Triggered Healing Could Replace Steel in Cars, Jets, and Spacecraft
"Watched cracked metal-like plastic mend itself": ATSP's Heat-Triggered Healing Could Replace Steel in Cars, Jets, and Spacecraft

Sustainability Times

time3 days ago

  • Sustainability Times

"Watched cracked metal-like plastic mend itself": ATSP's Heat-Triggered Healing Could Replace Steel in Cars, Jets, and Spacecraft

IN A NUTSHELL 🔬 Researchers have developed a new self-healing plastic, ATSP , that outperforms steel in strength. , that outperforms steel in strength. ♻️ ATSP is a recyclable material offering a sustainable alternative to traditional plastics. is a recyclable material offering a sustainable alternative to traditional plastics. 🚗 Potential applications include enhancing safety in the aerospace and automotive industries. and industries. 🔥 The material can self-repair through heat, restoring to near-original strength after damage. In the ever-evolving landscape of materials science, a revolutionary breakthrough has emerged: Aromatic Thermosetting Copolyester (ATSP). This innovative material, developed by researchers at Texas A&M University and the University of Tulsa, promises to transform industries reliant on durable materials. Funded by the U.S. Department of Defense, ATSP is a carbon-fiber plastic composite that not only heals itself like human skin but also surpasses steel in strength. With its potential applications in defense, aerospace, and automotive industries, ATSP represents a significant leap forward in sustainable materials technology. Understanding ATSP's Self-Healing Capabilities ATSP's groundbreaking properties stem from its unique bond-exchange chemistry, allowing it to repair cracks and deformations by applying heat. This process restores the material to its near-original strength, and in some cases, improves it. Mohammad Naraghi, PhD, from Texas A&M University, explained that these properties are crucial in high-stress environments, such as aerospace applications. In scenarios where critical aircraft components are damaged, the ability to self-heal on demand can prevent catastrophic failures. Beyond aerospace, ATSP's potential extends to the automotive industry. In the event of a collision, the material can reportedly restore a vehicle's shape, enhancing passenger safety. The recyclable nature of ATSP also positions it as a sustainable alternative to traditional plastics, reducing environmental impact without compromising on durability. Naraghi emphasized that ATSPs are an emerging class of vitrimers, combining thermoplastic flexibility with thermoset stability. 'This Changes How You Poop Forever' as This Revolutionary Toilet Paper Breakthrough Redefines How Billions Clean Themselves Every Day Exploring the Testing Process To assess ATSP's capabilities, researchers conducted rigorous testing, focusing on the material's self-healing and shape-shifting abilities. Cyclical creep tests involved repeatedly stretching and releasing the material while monitoring its strain energy storage and release. Two critical temperatures were identified during these tests: the glass transition temperature, where polymer chains move freely, and the vitrification temperature, where bonds become active enough for healing and reshaping. In one experiment, the composite was heated to approximately 320 degrees Fahrenheit to trigger shape recovery. Impressively, ATSP samples endured hundreds of stress and heating cycles, becoming more durable over time. Additional tests exposed damaged samples to 536 degrees Fahrenheit, revealing that the material returned to nearly full strength after two damage-healing cycles. By the fifth cycle, healing efficiency decreased to about 80 percent due to mechanical fatigue, although chemical stability remained intact. 'Yerba Madre's 'Eco Sneakers Are a Scam': Dirt Shoes Campaign Divides America as Wildflower Seeds Leave Streets a Mess Implications for Industry and Sustainability The development of ATSP underscores a significant shift towards more sustainable materials in industries traditionally reliant on metals and non-recyclable plastics. The ability to recycle ATSP without degrading its chemical structure presents a compelling case for its adoption in various sectors. The fusion of thermoplastic and thermoset properties in vitrimers like ATSP offers unparalleled advantages in terms of strength-to-weight ratio and versatility. Industries such as aerospace and automotive stand to benefit immensely from this innovation. The potential for reducing waste and improving safety standards is substantial. As Naraghi noted, ATSP represents not only a new class of materials but also a blueprint for how science and strategic partnerships can drive progress. The collaboration between Texas A&M University and the University of Tulsa serves as a testament to the power of joint efforts in advancing materials science. 'We Proved the Doubters Wrong': Envision Energy's 500-Day Two-Blade Wind Turbine Shakes Up Industry With Fewer Parts and Unmatched 99.3 Percent Reliability The Future of Self-Healing Materials ATSP's introduction to the market could herald a new era of materials with adaptive and self-healing properties. The implications extend beyond immediate applications, offering a glimpse into a future where materials can evolve alongside technological advancements. The versatility of ATSP and its capacity for repeated reshaping and healing make it a promising candidate for future innovations. As industries continue to prioritize sustainability and efficiency, the demand for materials like ATSP is expected to grow. The ongoing research and development efforts are likely to yield further enhancements in material performance and applications. Naraghi's vision of turning 'exciting curiosity into impactful applications' highlights the potential for self-healing materials to revolutionize how we approach design and manufacturing. The advent of ATSP raises intriguing possibilities for the future of material science. As researchers continue to explore its capabilities and applications, one must wonder: how will this self-healing technology redefine the limits of durability and sustainability in the years to come? This article is based on verified sources and supported by editorial technologies. Did you like it? 4.6/5 (23)

Recyclable ATSP Stuns With "broken wings healing mid-flight": Game-Changing Plastic Promises Extreme Durability and Greener Manufacturing Future
Recyclable ATSP Stuns With "broken wings healing mid-flight": Game-Changing Plastic Promises Extreme Durability and Greener Manufacturing Future

Sustainability Times

time3 days ago

  • Sustainability Times

Recyclable ATSP Stuns With "broken wings healing mid-flight": Game-Changing Plastic Promises Extreme Durability and Greener Manufacturing Future

IN A NUTSHELL 🔬 Researchers developed a new heat-resistant , recyclable plastic that promises to transform industries by extending product lifespans. , that promises to transform industries by extending product lifespans. 🛠️ The plastic , known as Aromatic Thermosetting Copolyester (ATSP), can self-heal and maintain its strength under extreme conditions. , known as Aromatic Thermosetting Copolyester (ATSP), can and maintain its strength under extreme conditions. 🚀 High-performance industries like aerospace and automotive could benefit from the material's lightweight and durable properties. and could benefit from the material's lightweight and durable properties. 🌱 The development aligns with global goals for sustainability, aiming to reduce waste and improve environmental responsibility. In a groundbreaking development, researchers have unveiled a new type of plastic that is both heat-resistant and recyclable, offering potential transformations across several industries, including aerospace, medical, and electronics manufacturing. This innovation, developed through a collaboration between Texas A&M University and the University of Tulsa, promises to extend the lifespan of products while significantly reducing waste. By harnessing the unique properties of Aromatic Thermosetting Copolyester (ATSP), the researchers have created a material capable of self-healing, maintaining strength under repeated use, and withstanding extreme conditions. The implications for industries that rely on high-performance materials are profound and could herald a new era of sustainable manufacturing. Revolutionizing High-Performance Industries The quest for materials that can endure extreme conditions while maintaining functionality is crucial for high-performance industries like aerospace, defense, and automotive. Dr. Mohammad Naraghi of Texas A&M University, along with Dr. Andreas Polycarpou from the University of Tulsa, spearheaded research into ATSP. They focused on its performance under stress, heat, and repetitive damage. Dr. Naraghi emphasized the importance of materials that can withstand high temperatures and impacts without compromising safety. The development of ATSP addresses these demands by offering a unique bond exchange capability that allows for on-demand self-healing. What sets ATSP apart is its ability to regain its original shape after sustaining damage, making it particularly appealing for automotive applications where safety and durability are paramount. Additionally, ATSP's recyclability distinguishes it from conventional plastics, aligning with industries' goals to reduce environmental waste. Reinforced with carbon fibers, ATSP surpasses steel in strength while remaining lighter than aluminum, making it a prime candidate for applications where weight reduction is critical. 'US Eco-Sheets Crush Plastic Giants': Ultra-Strong Bacteria Fabric Shakes Up Every Household and Industry With a Sudden Wave of Unstoppable Innovation Enduring Rigorous Testing To validate the durability and recovery capabilities of ATSP, the research team conducted extensive cyclical creep testing. This process involved evaluating how ATSP stored and released strain energy during repeated stretching. Two critical temperature points were identified: the glass transition temperature and the vitrification temperature. The former allows polymer chains to move more freely, while the latter activates bonds enabling reshaping and healing. In a series of deep-cycle bending fatigue tests, the material was subjected to temperatures of 320 °F, triggering repairs. ATSP successfully endured hundreds of stress-heating cycles and even demonstrated improved durability after healing. Dr. Naraghi compared the material's behavior to human skin, which can stretch, heal, and return to its original form. Despite some decline in efficiency after multiple cycles, the material maintained chemical stability, underscoring its potential for practical applications. '$1.5 Trillion Plastics Disaster Is 'Wrecking Global Health Every Single Year'': Shocking Report Reveals Hidden Costs Implications for Sustainable Manufacturing The introduction of ATSP into high-performance manufacturing could significantly alter the landscape of sustainable production. The ability of this material to endure harsh conditions and recover from damage challenges existing notions of strength and resilience. Funded by the Air Force Office of Scientific Research, the project benefited from partnerships with ATSP Innovations, which played a crucial role in translating research into practical solutions. The findings herald a future where high-performance plastics not only survive but thrive under demanding conditions. This capability to adapt and recover from damage could reshape industries' approaches to manufacturing, emphasizing sustainability without compromising on performance. The potential reduction in waste and the extended lifespan of products align with global sustainability goals, offering a path forward for environmentally conscious manufacturing practices. 'Dead Batteries Reborn': New Friction Tech Recovers Lithium Power Without Waste or Toxic Byproducts in Breakthrough Process Future Prospects and Challenges While the promise of ATSP is evident, several challenges remain before it can be widely adopted across industries. The scalability of production, cost considerations, and integration into existing manufacturing processes will require careful navigation. However, the potential benefits, including reduced waste, enhanced safety, and improved performance, present a compelling case for continued development and investment in this technology. As industries increasingly prioritize sustainability, the demand for materials like ATSP is likely to grow. The ability to create products that are not only durable but also environmentally friendly could become a defining characteristic of future manufacturing. The continued collaboration between academic institutions, industry partners, and government agencies will be pivotal in realizing this vision, driving innovation and progress in high-performance materials. The development of heat-resistant, recyclable plastics like ATSP marks a significant step forward in sustainable manufacturing. As industries explore the potential applications of this technology, the question remains: how will the integration of such innovative materials reshape our approach to manufacturing and environmental responsibility in the coming years? This article is based on verified sources and supported by editorial technologies. Did you like it? 4.6/5 (21)

Scientists find surprising sex reversal in Australian birds
Scientists find surprising sex reversal in Australian birds

France 24

time4 days ago

  • France 24

Scientists find surprising sex reversal in Australian birds

A study of five common Australian species, including kookaburras, magpies and lorikeets, found around six percent of birds had the chromosomes of one sex but the reproductive organs of another. The findings indicated a surprisingly high number of birds had reversed their sex after birth, said researchers from the University of the Sunshine Coast. "This indicates that sex determination in wild birds is more fluid than we thought, and can persist into adulthood," said study co-author Dominique Potvin. The study performed DNA tests on almost 500 birds. The overwhelming majority of sex reversals involved genetically female birds growing male gonads. "We also discovered a genetically male kookaburra who was reproductively active with large follicles and a distended oviduct, indicating recent egg production," said Potvin. Sex reversal is well known in certain species of reptile and fish but is thought to be rare in wild birds and mammals. Scientists have documented how pollutants and even warm temperatures can trigger sex reversal in frogs. The cause of sex reversal in wild birds was not clear, the University of the Sunshine Coast study said. But it could be due to environmental factors, such as hormone-disrupting chemicals building up in wild areas. "Understanding how and why sex reversal occurs is vital for conservation and for improving the accuracy of bird research," added Potvin. The study was published this week in peer-reviewed journal Biology Letters.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store