logo
After 100 Years of Quantum Mechanics, Physicists Still Can't Agree on Anything

After 100 Years of Quantum Mechanics, Physicists Still Can't Agree on Anything

Gizmodo3 days ago
In July 1925—exactly a century ago—famed physicist Werner Heisenberg wrote a letter to his equally famous colleague, Wolfgang Pauli. In it, Heisenberg confesses that his 'views on mechanics have become more radical with each passing day,' requesting Pauli's prompt feedback on an attached manuscript he's considering whether to 'complete…or to burn.'
That was the Umdeutung (reinterpretation) paper, which set the foundation for a more empirically verifiable version of quantum mechanics. For that reason, scientists consider Umdeutung's publication date as quantum mechanics's official birthday. To commemorate this 100th anniversary, Nature asked 1,101 physicists for their take on the field's most fiercely debated questions, revealing that, as in the past, the field of quantum physics remains a hot mess.
Published today, the survey shows that physicists rarely converge on their interpretations of quantum mechanics and are often unsure about their answers. They tend to see eye-to-eye on two points: that a more intuitive, physical interpretation of math in quantum mechanics is valuable (86%), and that, perhaps ironically, quantum theory itself will eventually be replaced by a more complete theory (75%). A total of 15,582 physicists were contacted, of which 1,101 responded, giving the survey a 7% response rate. Of the 1,101, more than 100 respondents sent additional written answers with their takes on the survey's questions.
Participants were asked to name their favored interpretation of the measurement problem, a long-standing conundrum in quantum theory regarding the uncertainty of quantum states in superposition. No clear majority emerged from the options given. The frontrunner, with 36%, was the Copenhagen interpretation, in which (very simply) quantum worlds are distinct from classical ones, and particles in quantum states only gain properties when they're measured by an observer in the classical realm.
It's worth noting that detractors of the Copenhagen interpretation scathingly refer to it as the 'shut up and calculate' approach. That's because it often glosses over weedy details for more practical pursuits, which, to be fair, is really powerful for things like quantum computing. However, more than half of physicists who chose the Copenhagen interpretation admitted they weren't too confident in their answers, evading follow-up questions asking them to elaborate.
Still, more than half of the respondents, 64%, demonstrated a 'healthy following' of several other, more radical viewpoints. These included information-based approaches (17%), many worlds (15%), and the Bohm-de Broglie pilot wave theory (7%). Meanwhile, 16% of respondents submitted written answers that either rejected all options, claimed we don't need any interpretations, or offered their personal takes on the best interpretation of quantum mechanics.
So, much like many other endeavors in quantum mechanics, we'll just have to see what sticks (or more likely, what doesn't).
Physicists who discussed the results with Nature had mixed feelings about whether the lack of consensus is concerning. Elise Crull at the City University of New York, for instance, told Nature that the ambiguity suggests 'people are taking the question of interpretations seriously.'
Experts at the cross-section of philosophy and physics were more critical. Tim Maudlin, a philosopher of physics at New York University, told Gizmodo that the survey's categorization of certain concepts is misleading and conducive to contradictory answers—a discrepancy that the respondents don't seem to have realized, he said. 'I think the main takeaway from this is that physicists do not think clearly—and have not formed strongly held views—about foundational issues in quantum theory,' commented Maudlin, my professor in graduate school.
In an email to Gizmodo, Sean Carroll, a theoretical physicist at Johns Hopkins who responded to the survey, expressed similar concerns. Several factors may be behind this lack of consensus, he said, but there's a prevalent view that it 'doesn't matter as long as we can calculate experimental predictions,' which he said is 'obviously wrong.'
'It would be reasonable if we thought we otherwise knew the final theory of physics and had no outstanding puzzles,' added Carroll, who was part of an expert group consulted for the survey. 'But nobody thinks that.'
'It's just embarrassing that we don't have a story to tell people about what reality is,' admitted Carlton Caves, a theoretical physicist at the University of New Mexico in Albuquerque who participated in the survey, in Nature's report.
However, the survey's results do seem to hint at a general belief in the importance of a solid theoretical groundwork, with almost half of the participants agreeing that physics departments don't give sufficient attention to quantum foundations. On the other hand, 58% of participants answered that experimental results will help inform which theory ends up being 'the one.'
For better or worse, the survey represents the lively, fast-developing field of quantum science—which, if you've been following our coverage, can get really, really weird. A lack of explanation or consensus isn't necessarily bad science—it's just future science. After all, quantum mechanics, for all its complexity, remains one of the most experimentally verified theories in the history of science.
It's fascinating to see how these experts can disagree so wildly about quantum mechanics, yet still offer solid evidence to support their views. Sometimes, there's no right or bad answer—just different ones.
For you fellow quantum enthusiasts, I highly recommend that you check out the full report for the entire account of how and where physicists were split. You can also find the original survey, the methodology, and an anonymized version of all the answers at the end of the report.
And if you do take the survey, or at least part of it, feel free to share your answers. Oh, and let me know whether you believe Heisenberg should have burned Umdeutung after all.
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Understanding Non-Mendelian Genetics (Patterns of Inheritance)
Understanding Non-Mendelian Genetics (Patterns of Inheritance)

Health Line

time6 hours ago

  • Health Line

Understanding Non-Mendelian Genetics (Patterns of Inheritance)

In Mendelian inheritance patterns, you receive one version of a gene, called an allele, from each parent. These alleles can be dominant or recessive. Non-Mendelian genetics don't completely follow these principles. Genetics is an expansive field that focuses on the study of genes. Scientists who specialize in genetics are called geneticists. Geneticists study many different topics, including: how genes are inherited from our parents how DNA and genes vary between different people and populations how genes interact with factors both inside and outside of the body If you're looking into more information on genetics topics, you may come across two types of genetics: Mendelian and non-Mendelian genetics. This article reviews both types of genetics, with a focus on non-Mendelian genetics. Continue reading to learn more. What is Mendelian genetics? It's possible that you may remember some concepts of Mendelian genetics from your high school biology class. If you've ever done a Punnett square, you've learned about Mendelian genetics. The principles of Mendelian genetics were established by the Austrian monk Gregor Mendel in the mid-19th century based on his experiments with pea plants. Through his experiments, Mendel pinpointed how certain traits (such as pea color) are passed down across generations. From this information, he developed the following three laws, which are the basis of Mendelian genetics: Dominance. Some variants of a gene, called alleles, are dominant over others. Non-dominant alleles are referred to as recessive. If both a dominant and recessive allele are inherited, the dominant trait will be the one that shows. Segregation. Offspring inherit one allele for a gene from each of their parents. These alleles are passed down randomly. Independent assortment. Genetic traits are inherited independently of each other. Pea color: An example of Mendelian genetics at work To illustrate how Mendelian genetics works, let's use an example with pea plants, in which yellow pea color (Y) is dominant and green pea color (y) is recessive. In this particular example, each parent pea plant is heterozygous, meaning it has a dominant and recessive allele, noted as Yy. When these two plants are bred, noted as Yy x Yy, the following pattern of inheritance will be seen: 25% of offspring will be homozygous dominant (YY) and have yellow peas. 50% of offspring will be heterozygous (Yy) and have yellow peas. 25% of offspring will be homozygous recessive (yy) and have green peas. What are examples of health conditions that follow Mendelian patterns of inheritance? There are several health conditions that follow Mendelian patterns of inheritance. Alleles for sickle cell anemia and cystic fibrosis are recessive. This means that you need two copies of the recessive allele, one from each parent, to have these conditions. In contrast, the allele for Huntington's disease is dominant. That means that you only need a single copy of the allele (from one of your parents) to have it. Sex-linked conditions Some health conditions can be linked to genes in the sex chromosomes (X and Y). For example, hemophilia is X-linked recessive. In those assigned male at birth, who have a single X chromosome, only one copy of the recessive allele is enough to have hemophilia. That's why hemophilia is more common in males. Individuals assigned female at birth have two X chromosomes, meaning they need two copies of the recessive allele to have hemophilia. What are non-Mendelian genetics? Exceptions exist for every rule, and that's also true for genetics. Simply put, non-Mendelian genetics refers to inheritance patterns that don't follow Mendel's laws. Here are some different types of non-Mendelian genetics: Polygenic traits Some traits are determined by two or more genes instead of just one. These are called polygenic traits and don't follow Mendelian inheritance patterns. Examples of polygenic health conditions include: hypertension diabetes certain cancers, such as breast and prostate cancer Mitochondrial inheritance Your mitochondria are the energy factories of your cells and also contain their own DNA, called mtDNA. While there are some exceptions, mtDNA is usually inherited from your mother. You get your mtDNA from your mother because the mitochondria present in sperm typically degrade after fertilization. This leaves behind just the mitochondria in the egg. Examples of Mitochondrial health conditions include Leber hereditary optic neuropathy (LHON) and mitochondrial encephalomyopathy. Epigenetic inheritance Epigenetics refers to how genes are expressed and regulated by factors outside of the DNA sequence. This includes things like DNA methylation, in which a chemical called a methyl group is added to a gene, turning it 'on' or 'off'. Epigenetic factors can change as we get older and are exposed to different things in our environment. Sometimes, these changes can be passed down to the next generation, which is called epigenetic inheritance. Certain cancers (such as breast, colorectal, and esophageal cancer) have been linked to epigenetic changes. Neurological disorders like Alzheimer's and metabolic diseases like Type 2 diabetes have also been associated with epigenetic inheritance. Genetic imprinting While we inherit two copies of a gene, one from each parent, in some cases, only one copy of the gene may be turned 'on' via DNA methylation. This is called imprinting, and it only affects a small percentage of our genes. Which gene is turned 'on' can depend on where the gene came from. For example, some genes are only turned 'on' when they come from the egg, while others are only 'on' when they come from the sperm. Examples of conditions associated with genetic imprinting include Beckwith-Wiedemann syndrome, Silver-Russell syndrome, and Transient Neonatal Diabetes Mellitus. Gene conversion Gene conversion can happen during meiosis, the type of cell division that helps make sperm and eggs. After meiosis, each sperm and egg contains one set of chromosomes and therefore one set of alleles to be passed down to offspring. During meiosis, genetic information from one copy of an allele (the donor) may be transferred to the corresponding allele (the recipient). This results in a genetic change that effectively converts the recipient allele to the donor allele. Genetic conditions influenced by gene conversions include hemophilia A, sickle cell disease, and congenital adrenal hyperplasia. What are examples of health conditions that follow non-Mendelian patterns of inheritance? Most health conditions we're familiar with don't follow Mendelian inheritance patterns. These conditions are often polygenic, meaning the effects of multiple genes contribute to them. For example, cystic fibrosis is caused by inheriting two copies of a recessive allele of a specific gene. However, there's not an isolated 'heart disease' allele that we inherit that causes us to develop heart disease. Mitochondrial disorders, which are caused by changes in mtDNA, are another type of health condition that follows non-Mendelian patterns of inheritance. This is because you typically inherit mtDNA from your mother. Sometimes problems with genetic imprinting can lead to disorders. Prader-Willi syndrome and Beckwith-Wiedemann syndrome are two examples. How do Mendelian and non-Mendelian genetics contribute to our understanding of genetic diseases in humans? Understanding both Mendelian and non-Mendelian inheritance patterns is important in understanding how different genetic diseases may be passed down. For example, if you have a certain genetic disease or you know that one runs in your family, you may have concerns about future children inheriting it. In this situation, working with a medical professional, such as a genetic counselor, who understands a disease's inheritance patterns can help you get an understanding of the risk of future children having the disease. Additionally, understanding genetic changes and inheritance can affect future therapies. This information can be important for developing gene therapies for a variety of genetic diseases. Takeaway Mendelian genetics focuses on the principles that there are dominant and recessive alleles and that we randomly inherit one copy of an allele from each parent. Some health conditions follow basic Mendelian inheritance patterns. Examples include cystic fibrosis and Huntington's disease. Non-Mendelian genetics don't follow the principles outlined by Mendel. Many health conditions we're familiar with don't follow Mendelian inheritance patterns because they're polygenic, affect mtDNA, or are associated with imprinting.

When Medicine Meets Philosophy: A New SEC Series
When Medicine Meets Philosophy: A New SEC Series

Medscape

time6 hours ago

  • Medscape

When Medicine Meets Philosophy: A New SEC Series

Medicine and Philosophy, a new roundtable series by the Spanish Society of Cardiology (SEC) in collaboration with Madrid's Círculo de Bellas Artes, aims to facilitate discussions between medical, science, and humanities experts. The series, which took place in May and June, was recorded and can be viewed online at the SEC's channel. Organizers and Topics The Hippocratic Chapter of the SEC, along with organizers from the Círculo de Bella Artes, decided on three healthcare topics to explore in the series. The session titles were "The Doctor-Patient Relationship in the Era of Artificial Intelligence," "Who Wants to Live Forever?", and "Is Boredom a Medical Problem? AI in Medicine: Pros and Cons AI's role in medicine was the first session's focus. Panelists discussed how AI saves time by streamlining data interpretation, allowing more time spent with patients. Ironically, the extra time results in the expectation that patient load should increase. The importance of physician input in AI advancement for medical use, as well as educating future clinicians on AI, were discussed. A Long Life The concept of living a longer life was discussed in the second session. A balanced approach to the topic by medical professionals and philosophers created a crossover of biological facts with existential questions about the meaning of life. Is Boredom Treatable? The last session featured panelists talking about boredom, whether it is a medical issue, and the social and medical repercussions of labeling these normal emotional life experiences as treatable conditions. Were These Roundtables Successful? Yes. All sessions sold out and this success has prompted the organizers to brainstorm future topics for collaboration. Also, expanding this series outside of Madrid is a possibility. Bottom line: Viewing healthcare topics through scientific and philosophical lenses can foster thought-provoking discussions, as shown by the success of the Medicine and Philosophy roundtable series. The full list of panelists can be found on the Círculo de Bellas Artes page for the roundtable series.

Nearby super-Earth K2-18 b may be a water-rich ocean planet: 'This has certainly increased the chances of habitability'
Nearby super-Earth K2-18 b may be a water-rich ocean planet: 'This has certainly increased the chances of habitability'

Yahoo

time8 hours ago

  • Yahoo

Nearby super-Earth K2-18 b may be a water-rich ocean planet: 'This has certainly increased the chances of habitability'

When you buy through links on our articles, Future and its syndication partners may earn a commission. The saga surrounding Neptune-size "super-Earth" exoplanet K2-18 b just got a whole lot more interesting. For a quick recap, this is the world a team of scientists recently suggested could host life — to the dismay of other scientists in the community, who felt the announcement failed to include necessary caution. While signs of life on the world have failed to conclusively present themselves to the James Webb Space Telescope (JWST), the powerful space telescope has discovered that this planet is so rich in liquid water that it could be an ocean, or "Hycean" world. "This has certainly increased the chances of habitability on K2-18 b" Nikku Madhusudhan, the University of Cambridge scientist behind the original K2-18b discovery as well as the new study, told "This is a very important development and further increases the chance of a Hycean environment in K2-18 b. It confirms K2-18 b to be our best chance to study a potential habitable environment beyond the solar system at the present time." The story regarding the habitability of K2-18 b began back in April 2025, when Madhusudhan and fellow researchers from the University of Cambridge announced they had found what they called the "strongest evidence yet" of life beyond the solar system around this distant super-Earth (it's around nine times as massive as our planet). The evidence came from the tentative detection of molecules that, when found in the atmosphere of Earth, are typically the result of biological processes of living things. The pressure was then on to confirm these potential biosignatures: dimethyl sulfide and dimethyl disulfide. The team set about this by observing four separate instances of K2-18 b crossing, or "transiting," the face of its parent red dwarf star, located about 124 light-years away, during its roughly 33-Earth-day orbit. Because chemicals absorb and emit light at characteristic wavelengths, when light from a parent star passes through a planet's atmosphere, the molecules in that atmosphere leave their telltale fingerprints in the spectrum of starlight. "With four additional transit observations using JWST, we have measured the spectrum of K2-18 b's atmosphere with unprecedented precision," Renyu Hu, the new study's team leader and a NASA Jet Propulsion Lab scientist, told "The spectrum allowed us to conclusively detect both methane and carbon dioxide in the planet's atmosphere and to constrain their abundances. This information points to a planet with a water-rich interior." Hu explained that the team searched for signals of dimethyl sulfide and other organic sulfur molecules in the spectrum using several independent models, but did not find conclusive evidence for their presence. "This was not necessarily disappointing," Hu continued. "We're excited about establishing the planet's water-rich nature." Is K2-18 b a ocean world? Saying it's now confirmed that K2-18 b is water-rich, Hu explained that the next step is to discover if the planet possesses a global liquid water ocean. Ironically, one of the most positive signs of such an ocean is the fact that the atmosphere of this super-Earth appears to lack water vapor. "The spectrum we obtained does not show signs of water vapor. If the atmosphere truly lacks water, this suggests that water has been depleted — most likely through condensation," Hu said. "On Earth, this process is known as the 'cold trap,' and geoscientists consider it essential for retaining water over billions of years by preventing it from escaping to space. "Observing a similar process on an exoplanet would be very exciting. Rigorously confirming the absence of water can by itself be a scientifically important goal for future observations," Hu said. However, Hu cautioned that the spectrum detected by the JWST could also be explained by an alternative model in which the atmosphere actually contains abundant water vapor. Establishing whether K2-18 b and other similar temperate, sub-Neptune-sized planets possess liquid water oceans, Hu says, will also require detecting the presence of a broader set of atmospheric gases beyond methane and carbon dioxide. It would also require an absence of molecules like ammonia, carbon monoxide and sulfur dioxide, which, as of yet, have indeed not been detected in the atmosphere of K2-18 b "This conclusion is based on theoretical work by my group and several others," Hu added. "With the new observations providing valuable context, we've summarized these insights into a roadmap to help guide future observations and studies." Meanwhile, the search for the biosignatures, dimethyl sulfide and dimethyl disulfide, is far from done; while not hitting the significance level required for a confirmation, this research did provide a stronger signal from these molecules than were provided by previous examinations. "The evidence for dimethyl sulfide in the present work is significantly higher than what we had with our previous observations in the same near-infrared wavelength range," Madhusudhan said. "However, this evidence is still not high enough to claim a conclusive detection. "We also need to be able to distinguish dimethyl sulfide from other possible contributors, such as methyl mercaptan, which is also a biosignature on Earth." Related Stories: — The mystery of how strange cosmic objects called 'JuMBOs' went rogue — These mysterious objects born in violent clashes between young star systems aren't stars or planets — James Webb Space Telescope dives into the atmosphere of a mystery rogue planet or failed star It looks certain that K2-18 b will continue to hold the interest of astronomers for some time. "It is great that we are able to infer tentative signs of potential biosignatures with current JWST observations, but significantly more time is needed for conclusive detections. A key question is whether the atmosphere contains one or more biosignatures," Madhusudhan said. "At the same time, extensive theoretical and experimental efforts are needed to robustly identify biological and non-biological pathways for candidate biosignature molecules." One thing the team is sure of, though, is the progress made thus far in the study of K2-18 b wouldn't have been possible without the JWST. And, the $10 billion space telescope is set to play a key role in the future investigation of this super-Earth. "Our observations and analyses add to the growing list of exciting discoveries that highlight the truly transformative science enabled by JWST," Hu concluded. "While we found its Near-Infrared Spectrograph [NIRSpec] particularly well suited to address the goals of our study, other JWST instruments or observational modes could provide complementary and highly valuable information to further enhance our understanding of this planet." The team's research is available as a preprint on the paper repository arXiv. Solve the daily Crossword

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store