Research sheds light on surprising connection between solar farms and bird species: 'The only sensible path'
A new study reveals a surprising connection between solar farms and biodiversity. Per a report at Phys.org, researchers from the Royal Society for the Protection of Birds and the University of Cambridge have established that solar farms in the United Kingdom can actually benefit bird diversity when those farms are properly managed.
Published in the journal Bird Study, the research examined solar farms located in East Anglia, a mainly agricultural area. According to their findings, hectare for hectare, this area had a greater number of bird species than nearby agricultural lands.
"These numbers varied dramatically with solar farm management, with areas with a greater mix of habitats, managed specifically for nature co-benefits, having the greatest diversity — nearly three times as many birds compared to adjacent arable land," wrote Paul Casciato, from the University of Cambridge, at Phys.org.
According to their findings, the researchers believe that by providing wildlife additional spots for covering and perching, solar farms support bird populations and habitats. They also attributed the relationship between bird diversity and solar farm management "to increased floral diversity providing food via seeds and invertebrate prey."
As a result, the researchers concluded that solar farms can support wildlife biodiversity in areas that are "mixed-use landscapes."
"Our study shows that if you manage solar energy production in a certain way, not only are you providing clean energy but benefitting biodiversity," said Dr. Catherine Waite. Waite is a researcher at the University of Cambridge and co-author of the study.
Threatened bird species in the U.K. include the Corn Bunting, Greenfinch, Linnet, and Yellowhammer. Researchers believe that solar farms could help support their survival.
Increasing solar farms throughout the U.K. is part of the country's plan to reach net zero by 2050. Transitioning toward clean energy may help to reduce the nation's carbon footprint while also aiding conservation.
This new research underscores yet another benefit of solar energy. When properly managed, solar farms can combat rising global temperatures and promote biodiversity in areas where species are threatened.
Do you think more places of worship should embrace clean energy?
Yes — it sets a positive example
Only if it saves money
No opinion
Absolutely not
Click your choice to see results and speak your mind.
"Delivering a future that safeguards nature, tackles climate change, ensures food security and resilient farm businesses, and enables sustainable development is the only sensible path," said Beccy Speight, CEO of the Royal Society for the Protection of Birds. "This research shows that it is possible to balance competing needs."
Join our free newsletter for good news and useful tips, and don't miss this cool list of easy ways to help yourself while helping the planet.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
5 hours ago
- Yahoo
AI helped design an innovative new cancer treatment plan
If you purchase an independently reviewed product or service through a link on our website, BGR may receive an affiliate commission. Researchers may have come up with an interesting new treatment for cancer by talking to AI. According to a paper published this month, a research team led by the University of Cambridge turned to an 'AI scientist' powered by GPT-4 to help create a new AI-designed cancer treatment plan. The kicker? It only uses widely available drugs that have nothing to do with treating cancer. The researchers started by taking all of the data they had regarding popular drugs used to treat high cholesterol and alcohol dependence to look for hidden patterns that could point toward new cancer drug options. They prompted GPT-4 to identify combinations of the drugs that could possibly have a significant impact on breast cancer cells. Today's Top Deals Best deals: Tech, laptops, TVs, and more sales Best Ring Video Doorbell deals Memorial Day security camera deals: Reolink's unbeatable sale has prices from $29.98 The result is a new AI-designed cancer treatment plan that avoids standard cancer drugs and relies on drugs that will not target non-cancerous cells. The drugs that the AI was prompted to look for were also meant to be widely available, affordable, and already approved by regulators. Considering how many different types of cancer treatment options we've seen in recent years, this approach makes a lot of sense. It also opened some new doors, according to the researcher's findings, which are published in the Journal of Royal Society Interface. We've seen a huge increase in researchers and doctors turning to AI to try to come up with new treatment options for old problems, including an AI that can identify autism. So it isn't that surprising to see researchers once more turning to AI to help speed up scientific progress. It seems to have worked, too. According to the findings, the researchers tested the combinations suggested by the GPT-4 'scientist' and found that three of the 12 combinations worked better than current breast cancer drugs. They then fed that information back to the AI, which created four more combinations, three of which also showed a lot of promise. Of course, relying wholly on AI-designed cancer treatment plans isn't something doctors are likely to do immediately. More trials and research are needed to fully test the efficiency of these drug combinations. Testing will also need to be done to ensure there aren't any adverse side effects from combining these drugs over extended periods of time. But for those fighting cancer right now, research like this is promising and could one day help scientists find even better treatment options. And even if the AI hallucinates, the information it gives may spark a new idea that scientists hadn't thought of before. AI will never replace doctors, no matter how hard Google and others push for a future involving AI doctors. But by relying on AI to speed up research, scientists can potentially unlock new options they might not otherwise find for decades to come. More Top Deals Amazon gift card deals, offers & coupons 2025: Get $2,000+ free See the
Yahoo
16 hours ago
- Yahoo
This ‘Tower of Worms' Is a Squirming Superorganism
When food runs out, certain tiny roundworms, barely visible to the naked eye, crawl toward one another and build living, wriggling towers that move as one superorganism. For the first time, we've caught them doing that in nature on video. Scientists spent months pointing their digital microscope at rotting apples and pears to finally catch a glimpse of these living towers formed by Caenorhabditis roundworms in an orchard that is just downhill from the Max Planck Institute of Animal Behavior's location in Konstanz, Germany. 'It wasn't that hard to find. It's just the people didn't have the interest or time or funding for this kind of research,' says biologist Daniela Perez, lead author of the study. Perez and her team at the Max Planck Institute of Animal Behavior then studied this behavior in a laboratory to learn more. To spur the towering, they placed groups of Caenorhabditis elegans in a dish without food, alongside a toothbrush bristle that could work as a scaffold. Dozens of worms quickly climbed on top of the bristle and one another to form a structure that moved in an eerily coordinated manner. The tower responded to the touch of a glass pipe by attempting to latch onto it; it stretched to bridge the gap between the bottom of the dish and its lid; and it even waved its tip around to probe the surrounding environment. The results were published Thursday in Current Biology. [Sign up for Today in Science, a free daily newsletter] Researchers had previously observed this towering in the lab but didn't know that it was an actual survival strategy in the wild. 'Discovering [this behavior] in wild populations is really important as it shows this is a part of how these animals live and not just a lab artifact,' says William Schafer, a geneticist at the University of Cambridge, who studies C. elegans and was not involved in the study. Why do the worms do this? The researchers think towering helps worms set out to find richer food sources. When resources are limited, 'it probably makes sense for microscopic organisms to cooperate for dispersing by forming something bigger,' says the study's senior author Serena Ding. The towers could allow some of their members to reach new places or to hitchhike on other organisms such as fruit flies. The bigger question is how the worms communicate within the towers. If the worms on top latch onto a fly, how do those at the bottom know to detach from where they're anchored? They could communicate chemically through pheromones and mechanically through movement patterns, Schafer suggests. Perez says her team plans to test this next. 'Every time we have a meeting, we end up with 10 new project ideas,' she says. 'There are so many directions we can take this.'


Scientific American
a day ago
- Scientific American
This ‘Tower of Worms' Is a Squirming Superorganism
When food runs out, certain tiny roundworms, barely visible to the naked eye, crawl toward one another and build living, wriggling towers that move as one superorganism. For the first time, we've caught them doing that in nature on video. Scientists spent months pointing their digital microscope at rotting apples and pears to finally catch a glimpse of these living towers formed by Caenorhabditis roundworms in an orchard that is just downhill from the Max Planck Institute of Animal Behavior's location in Konstanz, Germany. 'It wasn't that hard to find. It's just the people didn't have the interest or time or funding for this kind of research,' says biologist Daniela Perez, lead author of the study. Perez and her team at the Max Planck Institute of Animal Behavior then studied this behavior in a laboratory to learn more. To spur the towering, they placed groups of Caenorhabditis elegans in a dish without food, alongside a toothbrush bristle that could work as a scaffold. Dozens of worms quickly climbed on top of the bristle and one another to form a structure that moved in an eerily coordinated manner. The tower responded to the touch of a glass pipe by attempting to latch onto it; it stretched to bridge the gap between the bottom of the dish and its lid; and it even waved its tip around to probe the surrounding environment. The results were published Thursday in Current Biology. On supporting science journalism If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today. Researchers had previously observed this towering in the lab but didn't know that it was an actual survival strategy in the wild. 'Discovering [this behavior] in wild populations is really important as it shows this is a part of how these animals live and not just a lab artifact,' says William Schafer, a geneticist at the University of Cambridge, who studies C. elegans and was not involved in the study. Why do the worms do this? The researchers think towering helps worms set out to find richer food sources. When resources are limited, 'it probably makes sense for microscopic organisms to cooperate for dispersing by forming something bigger,' says the study's senior author Serena Ding. The towers could allow some of their members to reach new places or to hitchhike on other organisms such as fruit flies. The bigger question is how the worms communicate within the towers. If the worms on top latch onto a fly, how do those at the bottom know to detach from where they're anchored? They could communicate chemically through pheromones and mechanically through movement patterns, Schafer suggests. Perez says her team plans to test this next. 'Every time we have a meeting, we end up with 10 new project ideas,' she says. 'There are so many directions we can take this.'