
This ‘Tower of Worms' Is a Squirming Superorganism
When food runs out, certain tiny roundworms, barely visible to the naked eye, crawl toward one another and build living, wriggling towers that move as one superorganism. For the first time, we've caught them doing that in nature on video.
Scientists spent months pointing their digital microscope at rotting apples and pears to finally catch a glimpse of these living towers formed by Caenorhabditis roundworms in an orchard that is just downhill from the Max Planck Institute of Animal Behavior's location in Konstanz, Germany. 'It wasn't that hard to find. It's just the people didn't have the interest or time or funding for this kind of research,' says biologist Daniela Perez, lead author of the study.
Perez and her team at the Max Planck Institute of Animal Behavior then studied this behavior in a laboratory to learn more. To spur the towering, they placed groups of Caenorhabditis elegans in a dish without food, alongside a toothbrush bristle that could work as a scaffold. Dozens of worms quickly climbed on top of the bristle and one another to form a structure that moved in an eerily coordinated manner. The tower responded to the touch of a glass pipe by attempting to latch onto it; it stretched to bridge the gap between the bottom of the dish and its lid; and it even waved its tip around to probe the surrounding environment. The results were published Thursday in Current Biology.
On supporting science journalism
If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.
Researchers had previously observed this towering in the lab but didn't know that it was an actual survival strategy in the wild. 'Discovering [this behavior] in wild populations is really important as it shows this is a part of how these animals live and not just a lab artifact,' says William Schafer, a geneticist at the University of Cambridge, who studies C. elegans and was not involved in the study.
Why do the worms do this? The researchers think towering helps worms set out to find richer food sources. When resources are limited, 'it probably makes sense for microscopic organisms to cooperate for dispersing by forming something bigger,' says the study's senior author Serena Ding. The towers could allow some of their members to reach new places or to hitchhike on other organisms such as fruit flies.
The bigger question is how the worms communicate within the towers. If the worms on top latch onto a fly, how do those at the bottom know to detach from where they're anchored? They could communicate chemically through pheromones and mechanically through movement patterns, Schafer suggests. Perez says her team plans to test this next. 'Every time we have a meeting, we end up with 10 new project ideas,' she says. 'There are so many directions we can take this.'
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
15 hours ago
- Yahoo
AI helped design an innovative new cancer treatment plan
If you purchase an independently reviewed product or service through a link on our website, BGR may receive an affiliate commission. Researchers may have come up with an interesting new treatment for cancer by talking to AI. According to a paper published this month, a research team led by the University of Cambridge turned to an 'AI scientist' powered by GPT-4 to help create a new AI-designed cancer treatment plan. The kicker? It only uses widely available drugs that have nothing to do with treating cancer. The researchers started by taking all of the data they had regarding popular drugs used to treat high cholesterol and alcohol dependence to look for hidden patterns that could point toward new cancer drug options. They prompted GPT-4 to identify combinations of the drugs that could possibly have a significant impact on breast cancer cells. Today's Top Deals Best deals: Tech, laptops, TVs, and more sales Best Ring Video Doorbell deals Memorial Day security camera deals: Reolink's unbeatable sale has prices from $29.98 The result is a new AI-designed cancer treatment plan that avoids standard cancer drugs and relies on drugs that will not target non-cancerous cells. The drugs that the AI was prompted to look for were also meant to be widely available, affordable, and already approved by regulators. Considering how many different types of cancer treatment options we've seen in recent years, this approach makes a lot of sense. It also opened some new doors, according to the researcher's findings, which are published in the Journal of Royal Society Interface. We've seen a huge increase in researchers and doctors turning to AI to try to come up with new treatment options for old problems, including an AI that can identify autism. So it isn't that surprising to see researchers once more turning to AI to help speed up scientific progress. It seems to have worked, too. According to the findings, the researchers tested the combinations suggested by the GPT-4 'scientist' and found that three of the 12 combinations worked better than current breast cancer drugs. They then fed that information back to the AI, which created four more combinations, three of which also showed a lot of promise. Of course, relying wholly on AI-designed cancer treatment plans isn't something doctors are likely to do immediately. More trials and research are needed to fully test the efficiency of these drug combinations. Testing will also need to be done to ensure there aren't any adverse side effects from combining these drugs over extended periods of time. But for those fighting cancer right now, research like this is promising and could one day help scientists find even better treatment options. And even if the AI hallucinates, the information it gives may spark a new idea that scientists hadn't thought of before. AI will never replace doctors, no matter how hard Google and others push for a future involving AI doctors. But by relying on AI to speed up research, scientists can potentially unlock new options they might not otherwise find for decades to come. More Top Deals Amazon gift card deals, offers & coupons 2025: Get $2,000+ free See the
Yahoo
a day ago
- Yahoo
This ‘Tower of Worms' Is a Squirming Superorganism
When food runs out, certain tiny roundworms, barely visible to the naked eye, crawl toward one another and build living, wriggling towers that move as one superorganism. For the first time, we've caught them doing that in nature on video. Scientists spent months pointing their digital microscope at rotting apples and pears to finally catch a glimpse of these living towers formed by Caenorhabditis roundworms in an orchard that is just downhill from the Max Planck Institute of Animal Behavior's location in Konstanz, Germany. 'It wasn't that hard to find. It's just the people didn't have the interest or time or funding for this kind of research,' says biologist Daniela Perez, lead author of the study. Perez and her team at the Max Planck Institute of Animal Behavior then studied this behavior in a laboratory to learn more. To spur the towering, they placed groups of Caenorhabditis elegans in a dish without food, alongside a toothbrush bristle that could work as a scaffold. Dozens of worms quickly climbed on top of the bristle and one another to form a structure that moved in an eerily coordinated manner. The tower responded to the touch of a glass pipe by attempting to latch onto it; it stretched to bridge the gap between the bottom of the dish and its lid; and it even waved its tip around to probe the surrounding environment. The results were published Thursday in Current Biology. [Sign up for Today in Science, a free daily newsletter] Researchers had previously observed this towering in the lab but didn't know that it was an actual survival strategy in the wild. 'Discovering [this behavior] in wild populations is really important as it shows this is a part of how these animals live and not just a lab artifact,' says William Schafer, a geneticist at the University of Cambridge, who studies C. elegans and was not involved in the study. Why do the worms do this? The researchers think towering helps worms set out to find richer food sources. When resources are limited, 'it probably makes sense for microscopic organisms to cooperate for dispersing by forming something bigger,' says the study's senior author Serena Ding. The towers could allow some of their members to reach new places or to hitchhike on other organisms such as fruit flies. The bigger question is how the worms communicate within the towers. If the worms on top latch onto a fly, how do those at the bottom know to detach from where they're anchored? They could communicate chemically through pheromones and mechanically through movement patterns, Schafer suggests. Perez says her team plans to test this next. 'Every time we have a meeting, we end up with 10 new project ideas,' she says. 'There are so many directions we can take this.'
Yahoo
a day ago
- Yahoo
Watch 'superorganism' created by tiny worms — the first time it's ever been spotted in the wild
When you buy through links on our articles, Future and its syndication partners may earn a commission. Nematodes have been spotted forming writhing towers of tiny worms in the wild for the first time, according to a report in the journal Current Biology. The bizarre behavior had previously only been observed in experimental settings, thought to be a competitive attempt to escape from the rest of the group. However, new images of these towers forming in the wild hint at a more mutually-beneficial motivation. The footage was captured by researchers in Konstanz, Germany, on fallen apples and pears at local orchards. The team from the Max Planck Institute of Animal Behavior (MPI-AB) and the University of Konstanz were then able to combine these images with follow-up laboratory experiments to demonstrate that the 'towering' behavior happens naturally, and that the worms engage in such behaviour as a means of mass transit. 'I was ecstatic when I saw these natural towers for the first time,' said senior author Serena Ding, group leader at the MPI-AB, describing the moment when co-author Ryan Greenway, a biologist at the University of Konstanz, sent her a video recording from the field. 'For so long natural worm towers existed only in our imaginations. But with the right equipment and lots of curiosity, we found them hiding in plain sight.' That curiosity also revealed some interesting aspects of worm cooperation. While the researchers observed many nematode species crawling inside the fruit, only a single species in the same developmental period — a tough larval stage known as a 'dauer' — participated in tower building. That level of species specificity in worm tower 'construction' hinted that there might be more driving the behavior than a seemingly random creature cluster. Related: Nematode resurrected from Siberian permafrost lay dormant for 46,000 years 'A nematode tower is not just a pile of worms,' said study first author Daniela Perez, a postdoctoral researcher at MPI-AB. 'It's a coordinated structure, a superorganism in motion.' The paper suggested these observations could serve as a 'missing link' into behavior of similar organisms. Such towering behavior has previously been observed in slime molds, fire ants and spider mites, but it is still relatively rare in nature. To see if other kinds of worms could also form such a 'superorganism', researchers created conditions to coach the roundworm Caenorhabditis elegans into assembling into similar structures. C. elegans is a model organism that is widely studied for both its behavior and biology. Perez stuck a toothbrush bristle into a food-free agar plate to act as a sort scaffold — then unleashed the worms. Within two hours, the C. elegans formed a tower using the bristle as its spine. Some smaller clusters of worms reached out exploratory 'arms,' while others bridged gaps between spaces. And when researchers tapped the top of the tower with a glass pick, the worms wriggled toward that stimulus. 'The towers are actively sensing and growing,' says Perez. 'When we touched them, they responded immediately, growing toward the stimulus and attaching to it.' RELATED STORIES —Why do worms come out in the rain? —Australian 'trash parrots' have now developed a local 'drinking tradition' —Wandering salamander: The tree‑climbing amphibian with a blood‑powered grip The researchers also wondered if there was some sort of worm hierarchy driving this activity. Did younger worms have to do all the work? Stronger ones? Smaller, weaker ones? It turns out that the roundworms were remarkably egalitarian in their efforts. Unlike the orchard-based nematodes, the laboratory-bound C. elegans represented a range of life stages, from larval to adult — but they all pitched in. That suggests 'towering' may be a more generalized strategy for group movement than previously thought. 'Our study opens up a whole new system for exploring how and why animals move together,' says Ding.