
Explained: ‘Realising the return'— how an Indian became part of Axiom-4
In June 2023, during Prime Minister Narendra Modi's state visit to Washington, India and the US announced a decision to finalise a strategic framework for human spaceflight cooperation. It was also revealed that Indian and American space agencies, Indian Space Research Organisation (ISRO) and National Aeronautics and Space Administration (NASA), would mount a joint effort to enable an Indian astronaut to travel to the International Space Station (ISS) by 2024.
The announcement came as a surprise. Till then, it was understood that the first Indians to travel to space after Rakesh Sharma's historic flight in 1984 would ride the Gaganyaan mission which ISRO had been preparing for since 2018, when Modi unveiled India's ambition to send humans into space by 2022. The 2022 timeline could not be adhered to. But astronauts had been selected and trained, and systems were under development and being tested.
The 2023 announcement offered India an opportunity to get real-life experience for one of its astronauts ahead of the Gaganyaan mission.
Only three nations — the US, Russia and China — have a human spaceflight programme of their own. Shubhanshu Shukla's flight, which came about on the back of the 2023 announcement, is thus being seen as another preparatory step ahead of the Gaganyaan mission.
A growing partnership
It has since emerged that the 2023 announcement was the result of at least a few years of discussions between India and the US. Their space agencies have been working on a joint NISAR (NASA-ISRO Synthetic Aperture Radar) mission for over a decade now, enabling a closer-than-ever partnership. That mission is finally ready now, and likely to be launched in the next few weeks from Sriharikota, Andhra Pradesh.
The need to further strengthen their partnership, possibly through a joint human spaceflight programme, had been broached several times during these interactions. This took place particularly after ISRO demonstrated its advanced capabilities with missions, such as Chandrayaan and Mangalyaan, and the development of sophisticated space systems.
This closer collaboration was formalised a couple of months after Modi's Washington visit in June 2023, when India signed the Artemis Accords, a US-devised set of principles for responsible behaviour and cooperation in space exploration, particularly in lunar and deep planetary missions.
It paved the way for unprecedented collaboration between the two countries in space-related matters, the first benefits of which have begun to unfold with the Axiom-4 mission.
Axiom Space's invitation
Shortly after the Artemis Accords were signed, Axiom Space, a private US-based space company, invited India to participate in its mission to the ISS. Axiom Space has been the first and till now the only beneficiary of a NASA programme to enable private US industry to send commercial crewed missions to low-earth orbits and the ISS. This is part of NASA's endeavour to build capabilities in the private sector while it focuses on science and planetary exploration.
Axiom Space has sent three multinational missions to the ISS so far, each carrying four astronauts. The inaugural mission, in 2022, marked the first instance of an all-private crew making its way to the ISS. None of the astronauts were affiliated to, or selected by, any national space agency, though one of them had been a former NASA astronaut. The other three were businessmen.
The second mission in 2023 also had three private individuals, and was commanded by Peggy Whitson, a former NASA astronaut and the world record holder for having spent the maximum number of days in space. The third mission last year had an all-European crew, with the first Turkish national to ever go into space.
For its fourth mission on Wednesday, on which Shukla will travel to the ISS, Axiom Space invited three countries who had last been to space more than 40 years ago — India (1984), Hungary (1978) and Poland (1980) — with Whitson named commander once again. Aptly, the mission has been themed 'Realize the Return'.
Anonna Dutt is a Principal Correspondent who writes primarily on health at the Indian Express. She reports on myriad topics ranging from the growing burden of non-communicable diseases such as diabetes and hypertension to the problems with pervasive infectious conditions. She reported on the government's management of the Covid-19 pandemic and closely followed the vaccination programme.
Her stories have resulted in the city government investing in high-end tests for the poor and acknowledging errors in their official reports.
Dutt also takes a keen interest in the country's space programme and has written on key missions like Chandrayaan 2 and 3, Aditya L1, and Gaganyaan.
She was among the first batch of eleven media fellows with RBM Partnership to End Malaria. She was also selected to participate in the short-term programme on early childhood reporting at Columbia University's Dart Centre. Dutt has a Bachelor's Degree from the Symbiosis Institute of Media and Communication, Pune and a PG Diploma from the Asian College of Journalism, Chennai. She started her reporting career with the Hindustan Times.
When not at work, she tries to appease the Duolingo owl with her French skills and sometimes takes to the dance floor. ... Read More

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


Time of India
29 minutes ago
- Time of India
From earth to orbit: How Axiom-4 will reach the space station
CAPE CANAVERAL (FLORIDA): When India's Shubhanshu Shukla and his three crewmates lift off aboard the Axiom-4 (Ax-4) mission on June 10, they'll travel in a previously used SpaceX's Falcon-9 rocket and a new Dragon spacecraft—the crew will give it a name in the coming days. But the journey from the launch pad to the International Space Station (ISS), where they'll spend up to a fortnight, is a finely choreographed sequence of events that plays out over 28 hours. TOI explains how: Ready for liftoff The process begins at the historic Launch Complex 39A at Nasa's Kennedy Space Centre in Florida. To refresh your memory, this is the complex from where Neil Armstrong lifted off to land on Moon! Hours before launch, the four Ax-4 astronauts, suited in custom flight gear, are driven to the pad and board the Dragon capsule—right now designated as 'C213'. Once inside, they complete a series of pre-launch checks alongside teams from SpaceX and Nasa. Roughly 35 minutes before liftoff, Falcon-9's fuelling begins post clearance from the Launch Director and once the crew's emergency escape system is powered on. Rocket is loaded with supercooled liquid oxygen and RP-1, a highly refined rocket-grade kerosene. Dragon switches to internal power at T-5 minutes. By the time the countdown reaches zero, every system must be in perfect alignment. Launch & ascent As the clock approaches T-0, Falcon-9's nine Merlin engines roar to life, lifting the rocket off the pad and into the sky. In just over a minute, it surpasses the speed of sound. At around 57 seconds into flight, it passes the phase known as 'Max Q'—the point of maximum aerodynamic pressure on the vehicle. It's one of the most critical moments where the rocket endures its peak mechanical stress. The climb continues as the rocket steers itself along a precise path to low-Earth orbit (LEO). The crew inside Dragon experience increasing g-forces as Earth's gravity fights their upward momentum. First stage separation Approximately two-and-a-half-minutes after launch, the main engines shut down, and the first stage — the lower part of the rocket — will separate. This stage has done its job and now heads back to Earth. Using cold gas thrusters and grid fins, it manoeuvres for a vertical landing on a floating drone ship stationed in the Atlantic Ocean. Meanwhile, the second stage engine ignites, pushing Dragon even higher and faster. Atop this stage, the capsule remains attached until it reaches a stable orbit. Entering orbit About 10 minutes after liftoff, Dragon separates from the second stage. Now in orbit, the spacecraft begins flying on its own. Its nose cone opens to reveal navigation instruments and docking sensors, essential for the next phase: catching up with the space station. Dragon is now travelling at more than 27,000 km/hr, circling Earth roughly once every 90 minutes. But the ISS is not in the same orbit just yet, and getting there requires a series of carefully-timed manoeuvres. Chasing the space station The journey to the ISS is not a straight line. It's more like a gradual orbital ballet. Over the course of the next 20 to 24 hours, Dragon executes a series of engine burns using its onboard thrusters. These raise and adjust its orbit, allowing it to phase into alignment with the space station's path. These manoeuvres are planned down to the second. Even a slight delay could affect the rendezvous window. Dragon uses GPS data, radar, and its own sensors to continuously track both its position and that of the ISS. Final approach & docking Once Dragon is within range, it begins a slow and measured approach. It halts at several pre-set points —called waypoints — starting from 400 metres out and moving progressively closer. At each stage, ground controllers and onboard systems assess whether to proceed. At around 20 metres, Dragon makes its final approach. Using a suite of laser-based sensors and cameras, it aligns precisely with the docking port on the station's Harmony module. The spacecraft then moves forward at just a few centimetres per second until it makes contact. The first stage is a soft capture, where magnets gently pull the capsule into position. This is followed by a hard capture: mechanical latches and hooks secure the spacecraft, and a pressure-tight seal is formed between Dragon and the ISS. Welcome aboard With docking complete, the crew is not immediately allowed to exit their vehicle and enter the station. Engineers on the ground conduct a series of leak checks and confirm that the pressure inside the docking vestibule is stable. Once verified, the hatches between Dragon and the ISS are opened. The Ax-4 astronauts then float into the space station, greeted by its current residents. Over the next two weeks, they will conduct a range of scientific experiments, including biomedical studies that could inform treatments for diseases like diabetes. For Shukla, the mission pilot, it marks not just a personal milestone but a proud moment for India's expanding role in global space exploration .


Time of India
an hour ago
- Time of India
From IISc To ISS: Shubhanshu Shukla to carry postcards as mementoes
TITUSVILLE (FLORIDA): Group Captain Shubhanshu Shukla, who is part of the Axiom-4 mission to the International Space Station (ISS), will be carrying with him a unique set of postcards designed by the Indian Institute of Science (IISc), Bengaluru — a symbolic tribute from one of India's premier science institutions to the nation's spacefaring aspirations. Shukla, selected as an astronaut-designate for India's upcoming Gaganyaan mission , has been associated with IISc as part of his training and has even published multiple scientific papers as part of research he conducted there, which TOI has reported earlier. His voyage on Axiom-4 marks not only his debut in space but also the continuation of IISc's legacy in shaping the contours of India's space programme. IISc has created six distinct postcard designs, all of which are expected to accompany Shukla to the ISS. There was no confirmation if more than one copy of each of these cards would go as every gram of what an astronaut carries to ISS is measured and there's a limit to how much each of them can carry. Each card encapsulates a theme celebrating the institution's century-long scientific journey and its contribution to space science. One card, titled 'Leading Scientists at IISc who have contributed to India's space program', features pioneers like Homi J Bhabha, Vikram Sarabhai, Satish Dhawan, Brahm Prakash, and Roddam Narasimha. Another card reads: 'Knowledge has no limits. Keep seeking, and it can take you places — on Earth, or in Space'. The designs also showcase artistic depictions of the IISc campus with motifs of student life, iconic buildings like the Main Building, and messages that encourage curiosity and exploration — such as 'Tapestry of Life and Knowledge' and 'From a Small Step to the Giant Leap'. Once Shukla returns to Earth, Nasa is expected to certify the flown postcards. IISc plans to preserve them as space-flown souvenirs — a first for the institute and a memento that threads India's scientific heritage with its cosmic future. Aside from these, Shukla will also carry souvenirs to honour Wing Commander (retd) Rakesh Sharma, India's first astronaut and someone who has been mentoring all four Gaganyaan astronaut-designates. Shukla has kept what he's carrying for Sharma a secret, and wishes to surprise him.


The Hindu
an hour ago
- The Hindu
Scientists uncover molecular clue to slow down reproductive aging
Researchers at the National Institute of Animal Biotechnology (NIAB) have made a significant discovery that could pave the way for new strategies to extend female fertility. Led by Prasad Rao from NIAB's Laboratory of Molecular Reproduction and Aging, the team has uncovered a molecular clue that appears to slow down reproductive aging. The scientific team, using both live mouse models and cultured goat ovaries, found that reducing the activity of a cellular protein called 'Cathepsin B' (Cat B) helps preserve the ovarian reserve. This ovarian reserve is the finite pool of egg cells (oocytes) that female mammals are born with. Unlike sperm, these crucial egg cells cannot be regenerated. The findings are important since, unlike sperm, oocytes cannot be regenerated. 'Over time, the quantity and quality of these eggs naturally decline due to factors like oxidative stress, inflammation and general cellular wear. This process accelerates with age. 'Cat B,' a protein-degrading enzyme, seems to be a key driver of this decline. By lowering its levels, we may be able to delay egg loss, effectively extending fertility naturally,' said The scientist team, which includes Aradhana Mohanty, Anjali Kumari, Lava Kumar S., Ajith Kumar, Pravin Birajdar, Rohit Beniwal, Mohd Athar and Kiran Kumar P., pointed out that the implications go far beyond the laboratory. It is because across India's rural heartlands and urban hospitals, fertility is quietly becoming a shared crisis. As both livestock and women age, their ability to reproduce declines, with significant biological and economic consequences, said researchers. In humans, fertility begins to decline in the early 30s, with a sharper drop in the 40s, reducing chances of conception and increasing the risk of miscarriage or chromosomal disorders. While assisted reproductive technologies like IVF provide options, they are often costly, invasive and less effective in older women. A safe, biological method to slow ovarian ageing could revolutionise fertility preservation for millions. For farmers, a simple intervention to extend reproductive lifespan of livestock could improve herd productivity, reduce stray cattle populations, and support the incomes of smallholder farmers who form the backbone of Indian agriculture. This is a rare moment where science serves both the farm and the family. From barns to birthing rooms, this discovery bridges animal science and human medicine, promising a future where age is no longer a barrier to reproduction, said researchers. For a country navigating the twin challenges of rural sustainability and reproductive health, the implications are profound and hopeful, said NIAB director G. Taru Sharma. The research results were published in the latest issue of 'Aging Cell'.