Ice Age Humans Were Experts at Wielding Fire, Study Finds
Learning to control fire was a game-changer for ancient humans, who could use it to cook food, see at night, and endure cold weather, among other things.
This skill dates back at least a million years, and while fire has proven pivotal throughout human history, it can be especially valuable at certain times.
The Last Glacial Maximum (LGM), for example, was the iciest part of the most recent glacial period in Earth's current ice age – and presumably a great time to cozy up by a fire.
Yet despite the era's extreme cold, there is scant evidence of humans using fire during the LGM, which lasted from about 26,500 to 19,000 years ago.
In a new study, researchers sought answers to this mystery by analyzing the remains of three ancient fireplaces found at an archaeological site in modern-day Ukraine, all of which are associated with human occupations at the site during the LGM.
These hearths reveal new details about pyrotechnology in the late Upper Paleolithic – a span of several frigid millennia when fireplaces seem inexplicably rare in the archaeological record.
"We know that fire was widespread before and after this period, but there is little evidence from the height of the Ice Age," says co-author William Murphree, a geoarchaeologist at the University of Algarve in Portugal.
Previous research suggests fire loomed large in the lives of Upper Paleolithic people, enabling vital activities that would be difficult or impossible without it.
"Fire was not just about keeping warm; it was also essential for cooking, making tools, and for social gatherings," says co-author Philip Nigst, an archaeologist at the University of Vienna in Austria.
The LGM brought "rapid climatic deterioration" to Europe, the researchers note, with extremely cold, arid conditions that led to habitat loss and geographic isolation. In that context, it seems unlikely people would choose to build fewer fires.
Maybe the cold hindered tree growth in steppes and grasslands, limiting the supply of firewood. Or maybe people built as many fires as ever, but harsh conditions during and after the LGM destroyed most of the evidence.
This prehistoric trend may also be an illusion, reflecting a modern publication bias more than an actual decline.
Given this uncertainty, the discovery of multiple hearths from the LGM could be revelatory. In addition to insights about ancient fire traditions, it might offer clues about the apparent dearth of hearths from this era.
Researchers investigated three hearths previously uncovered at Korman' 9, a site on the Dniester River in Ukraine. They analyzed each with a series of geoarchaeological techniques, seeking long-lost details about fires built tens of thousands of years ago.
Using microstratigraphic, micromorphological, and colorimetric analyses, they found the remains came from flat, open fireplaces, and that people mostly burned wood in them.
Despite their simplicity, these fires could have heated the ground to 600 degrees Celsius, which could indicate a fire burning well over that temperature, suggesting impressive pyrotechnic sophistication, especially amid such climatic upheaval.
The lack of big charcoal fragments made it hard to identify the main fuel source, but analysis of available charcoal revealed a predominance of spruce wood.
The hearths also contained traces of bone, but it's unclear why, explains co-author Marjolein Bosch, a zooarchaeologist at the University of Vienna, the Austrian Academy of Sciences, and the Natural History Museum Vienna.
"Some of the animal bones found at the site were burnt in a fire with a temperature of over 650 degrees Celsius. We are currently investigating whether they were used as fuel or just accidentally burned," Bosch says.
Differences among the three hearths could point to separate occupations of the site, possibly weeks or centuries apart, or these could be specialized hearths used by people within one occupation for various purposes or seasons.
"People perfectly controlled the fire and knew how to use it in different ways, depending on the purpose of the fire," Nigst says. "But our results also show that these hunter-gatherers used the same place at different times of the year during their annual migrations."
While at least some people apparently retained their pyrotechnic skills during the LGM, more research is still needed to explain why we find so few hearths like these at contemporary sites.
"Was most of the evidence destroyed by the ice-age-typical, alternating freezing and thawing of the soil?" Murphree says.
"Or did people not find enough fuel during the Last Glacial Maximum?" Nigst adds. "Did they not use fire, but instead relied on other technological solutions?"
The study was published in Geoarchaeology.
Why Aren't Humans as Hairy as Other Mammals? Here's The Science.
Ancient Body Paint May Have Been Prehistoric Sunscreen, Study Says
Scientists Discover First Probable Evidence of a Roman Fighter Mauled by a Lion
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
21 hours ago
- Yahoo
The sun: Facts about the bright star at the center of the solar system
When you buy through links on our articles, Future and its syndication partners may earn a commission. Quick facts about the sun How big it is: 865,000 miles (1.392 million kilometers) across How far away it is: 93 million miles (150 million km) What type of star it is: A yellow dwarf star The sun is the star at the center of our solar system. It's the largest, brightest and most massive object in the solar system, and it provides the light and heat that life on Earth depends on. Powered by a process called nuclear fusion, the sun can get hotter than 27 million degrees Fahrenheit (15 million degrees Celsius). The sun has been around for over 4 billion years, but one day, it will run out of fuel. Read on to learn more about what our local star is made of, how it formed and what will happen when it dies. Over 1 million Earths could fit inside the sun. The sun may look yellow from Earth, but it actually releases every color of light, meaning its true color is white. The sun is unique in that it's the only star in our solar system. Up to 85% of stars have at least one companion star. The sun contains over 99% of the mass of our entire solar system. Like Earth, the sun also rotates on its axis. Each rotation takes about 27 Earth days. The sun is a ball of gas and plasma made mostly of hydrogen. The sun uses these vast stores of hydrogen to generate the heat and light that sustain our planet. It does this through a process called nuclear fusion, in which two hydrogen atoms combine to create a different element, helium. The sun is about three-quarters hydrogen and one-quarter helium, with tiny amounts of metals. The larger a star is, the more rapidly it burns through its hydrogen. Some of the largest known stars — such as those with masses 40 times that of the sun — will live just 1 million years. By contrast, the sun will have a lifetime of around 10 billion years. Different parts of the sun reach different temperatures. The sun's core gets as hot as 27 million F (15 million C). The part of the sun we can see from Earth is called the photosphere, which is the "surface" of the huge ball of plasma. The temperature of the photosphere is about 9,900 F (5,500 C). Above the photosphere is the loose outer atmosphere of the sun, known as the corona. We can't see the corona from Earth under ordinary conditions, though it can be photographed during a total solar eclipse. The sun formed around 4.5 billion years ago. At that time, the area of the Milky Way galaxy that would become the solar system was a dense cloud of gas — the leftovers of an earlier generation of stars. The densest region of this cloud collapsed and created a seed, called a protostar, that would become the sun. As this young protostar grew, planets, moons and asteroids formed from the remaining raw material, and then began circling around the growing sun as they were sucked into orbit by the star's powerful gravity. At the heart of the sun, this same force sparked nuclear fusion. The heat and light from this nuclear reaction allowed life on Earth to evolve and prosper. However, this reaction will eventually lead to the sun's death when it runs out of nuclear fuel. The sun is around halfway through its lifetime. Our star is locked in a constant battle as outward pressure from nuclear fusion fights the inward pull of gravity. When the sun runs out of hydrogen in about 5 billion years, the inward force of gravity will win. The center of the sun will collapse, compressing into a dense core. Helium will start fusing into even denser elements, like carbon, nitrogen and oxygen. While this happens, the heat generated by the fusing of these elements will push the sun's outer shell to swell. This will be bad news for the inner planets of the solar system — including Earth. As the sun becomes a type of star called a red giant, its outer shell will expand to the orbit of Mars, gobbling up Mercury, Venus, Earth and Mars. But the red-giant phase is not when the sun will die. The outer layers that swell during the red-giant phase will become a shell of gas called a surrounding planetary nebula. This shell will be shed after approximately 1 billion years. This will expose the star's smoldering core, which, by this point, will be a dense ball called a white dwarf. As a white dwarf, the sun will dim. The material from the planetary nebula will spread out into the galaxy and form the building blocks of the next generation of stars and planets. Image 1 of 5 Space agencies have launched many spacecraft that help us observe and gather data about the sun. Pictured here is an artist's concept of the sun being observed by NASA's Parker Solar Probe. Image 2 of 5 The red giant star Camelopardalis. The sun will eventually become a red giant, and as it expands, it will engulf its nearest planets, including Earth. Image 3 of 5 Sunspots are darker, cooler areas that temporarily appear on the sun. They're caused by changes in the sun's magnetic field. Image 4 of 5 Solar storms happen when the sun releases flares of energy and particles. Image 5 of 5 Auroras on Earth happen when charged particles from the sun interact with our planet's atmosphere. Is Earth getting closer to the sun, or farther away? Where on Earth does the sun rise first? What color is the sun?
Yahoo
a day ago
- Yahoo
UH: Urgent response required to save world's coral reefs
HONOLULU (KHON2) — A study by researchers at University of Hawaiʻi at Mānoa's Hawaiʻi Institute of Marine Biology found that coral reefs are less frequent in the tropics due to warming oceans. The research found that the reefs are unable to beat the heat and effects of climate change, which rings the emergency alarm for conservationists. 8 takeaways from Hawaiʻi's top ranking for school lunches However, there is still hope, as the research showed that immediate actions to reduce greenhouse gas emissions can improve the future of these iconic ocean scenes across the planet. 'As the ocean warms, species tend to move poleward,' said lead author Noam Vogt-Vincent, lead author of the study. 'We know from the fossil record that coral reefs have previously expanded their ranges in response to past climate change, but we didn't know whether this was a matter of decades or millennia.' In order to predict changes in the distribution of these reefs, the research team used complex simulation models running on UH's high-performance computing cluster. The team created a global model including approximately 50,000 coral reef sites to the model, the researches tested three future emissions scenarios: one with low warming, around two degrees Celsius, a moderate warming scenario, around three degrees Celsius and a high warming model, which is greater than four degrees Celsius. 'By modeling coral reefs globally and incorporating evolution and connectivity, this study provides an unprecedented long-term view of how these complex ecosystems will respond to climate change,' said research professor Lisa McManus. Provided the current condition of the climate on coral reefs, the researchers found both good news and bad news. Download the free KHON2 app for iOS or Android to stay informed on the latest news 'Unfortunately, while we've confirmed that coral reef range expansion will indeed eventually occur, the biggest coral losses are expected in the next 60 years, meaning these new, higher-latitude reefs won't form fast enough to save most tropical coral species,' Vogt-Vincent said. While northern Florida, southern Australia and southern Japan may see new reefs in the future, they will not be in existence soon enough to help corals survive through the century, UH said. While the future seems bleak, there is still hope, with significant cuts in emissions, such as those outlined in the Paris Climate Agreement, could dramatically reduce the loss of coral. Aliʻi Drive to revert to a two-way street Currently, coral reduction is on track to lose up to 86% of coral reefs; but with lower emissions, losses could be reduced to only around 33% of coral reefs. 'Our study suggests that reductions in greenhouse gas emissions will not just improve coral reef futures this century, but for hundreds to thousands of years into the future,' Vogt-Vincent said. 'Our actions over the next few decades will therefore have incredibly long-lasting consequences for coral reefs globally.' Researchers will continue to monitor reef levels with their supercomputer power to try to better understand both threats and solutions surrounding the world's coral reefs. For more information, visit the Hawaiʻi Institute of Marine Biology's website. Copyright 2025 Nexstar Media, Inc. All rights reserved. This material may not be published, broadcast, rewritten, or redistributed.
Yahoo
a day ago
- Yahoo
Lake Natron: The caustic, blood-red lake in Tanzania that turns animals to 'stone'
When you buy through links on our articles, Future and its syndication partners may earn a commission. QUICK FACTS Name: Lake Natron Location: Northern Tanzania Coordinates: -2.332009081285983, 36.03373896004504 Why it's incredible: The lake is so alkaline, it burns the skin and eyes of most animals and turns some to "stone." Lake Natron has a chemical makeup that is so harsh, it is uninhabitable for most creatures. It is a "soda" lake, meaning it has high levels of dissolved sodium and carbonate. Due to this high concentration of salts and minerals, the lake's pH can reach 10.5, which is almost as caustic as ammonia solution — and animals that die on the shores of Lake Natron are preserved as calcified mummies as a result. Lake Natron sits along the East African Rift System, a divergent tectonic plate boundary that is tearing apart the African Plate. This geology means that Lake Natron is shaped by volcanic processes, which produce large amounts of sodium carbonate and calcium carbonate. These salts and other minerals trickle down into the lake from surrounding hills and enter the water from below via hot springs, Live Science previously reported. The lake does not drain into any river or sea, so the chemical concentration stays high year-round. Few animals can survive a salt level and pH as high as Lake Natron's, and the water can severely burn the skin and eyes of creatures that try to take a sip or dip. But animals that have adapted to the conditions, including lesser flamingos (Phoeniconaias minor) and tilapia, thrive in and around the lake. In fact, Lake Natron is the world's most important breeding site for lesser flamingos, with most of East Africa's 1.5 million to 2.5 million lesser flamingos — which represent around 75% of the global population of the species — hatching at the lake, according to the Tanzania Wildlife Management Authority. Lesser flamingos' legs have tough skin and scales that prevent burns from the water. These birds build nests on islands that form in the lake during the dry season, Live Science previously reported, and their babies are safe from most predators thanks to the deadly conditions. Related: Kilimanjaro's giant groundsels: The strange plants that thrive on Africa's tallest mountain In addition to being extremely alkaline, Lake Natron is so shallow that its water temperature can reach a scalding 140 degrees Fahrenheit (60 degrees Celsius) during the hottest times of the year, according to NASA's Earth Observatory. The lake is 1.6 feet (0.5 meters) deep and 9 miles (15 kilometers) wide, but it shrinks and expands depending on the weather, with less rainfall and river input during the dry season leading it to contract (and vice versa). When the lake shrinks, microorganisms that feast on its salts multiply. Haloarchaea (salt-loving organisms that lack a nucleus) and cyanobacteria (blue-green algae) can color the lake different shades of red thanks to pigments in their cells. The same pigments give lesser flamingos their pink hue, according to NASA's Earth Observatory, because these flamingos almost exclusively eat blue-green algae. Lake Natron made headlines in 2013, when photographer Nick Brandt's images of "stone" animals on the lake's shores were published in the book "Across the Ravaged Land" (Abrams Books, 2013). The pictures showed carcasses of birds and bats that had died on the shores of the lake and were preserved by its sodium carbonate. Brandt positioned them on branches and on the water to look "alive again in death," he wrote in the book. MORE INCREDIBLE PLACES —Last Chance Lake: The unusual 'soda lake' with conditions that may have given rise to life on Earth —Hot Tub of Despair: The deadly ocean pool that traps and pickles creatures that fall in —Jellyfish Lake: Palau's saltwater pool with a toxic bottom and surface waters brimming with millions of jellyfish "I unexpectedly found the creatures — all manner of birds and bats — washed up along the shoreline of Lake Natron," Brandt wrote. "No one knows for certain exactly how they die." Birds pictured in the book include a dove and a fish eagle. These birds do not feed and breed at Lake Natron, but they live in the salt marshes and freshwater wetlands that make up the surrounding landscape. These ecosystems also host greater flamingos, pelicans, ostriches, buffalo, wildebeest and many other creatures, according to the Tanzania Wildlife Management Authority. Discover more incredible places, where we highlight the fantastic history and science behind some of the most dramatic landscapes on Earth.