logo
What makes the NASA-ISRO NISAR satellite so special?

What makes the NASA-ISRO NISAR satellite so special?

The Hindu19 hours ago
The story so far: The Indian Space Research Organisation (ISRO) is planning to launch the NISAR satellite from Sriharikota on July 30 onboard a GSLV Mk-II rocket. 'NISAR' stands for NASA-ISRO Synthetic Aperture Radar and is a joint mission of the two space agencies. It is a sophisticated earth-observation satellite designed to study changes on the earth's surface in fine detail, covering earthquakes, volcanoes, ecosystems, ice sheets, farmland, floods, and landslides.
What's the need for NISAR?
NISAR is the first major earth-observing mission with a dual-band radar, which will allow it to observe changes more precisely than any other satellite. It will be able to see through clouds, smoke, and even thick vegetation, both at day and night, in all weather conditions. The three-tonne machine has been a decade in the making and costs more than $1.5 billion, also making it one of the most expensive earth-observing satellites to date.
The earth's surface is constantly changing. Natural disasters, human-driven changes, and climate shifts all affect environments and human societies. Satellites provide critical information by taking snapshots of these changes from space, helping scientists, governments, and relief agencies prepare for, respond to or study them. To this end, NASA and ISRO have created a powerful global mission that also allows ISRO guaranteed access to a stream of high‑resolution data tailored to India's needs.
NISAR's science and application goals span six areas: solid earth processes, ecosystems, ice dynamics, coastal and ocean processes, disaster response, and additional applications (including tracking groundwater, oil reservoirs, and infrastructure like levees, dams, and roads for subsidence or deformation and supporting food security research).
The planned mission lifetime is three years although its design lifetime is at least five years. Notably, the mission's data policy entails that the data NISAR produces will be freely available to all users (typically) within a few hours.
How does NISAR work?
Once it is launched, NISAR will enter into a sun-synchronous polar orbit at 747 km altitude and an inclination of 98.4°. From here, instead of snapping pictures, NISAR's synthetic aperture radar (SAR) will bounce radar waves off the planet's surface and measure how long the signal takes to come back and how its phase changes.
The ability of a radar antenna to resolve smaller details increases with its length, called its aperture. In orbit, deploying an antenna hundreds of metres long is impractical. SAR gets around this by mimicking a giant antenna. As the spacecraft moves forward, it transmits a train of radar pulses and records the echoes. Later, a computer coherently combines all those echoes as if they had been captured simultaneously by one very long antenna, hence the 'synthetic aperture'.
NISAR will combine an L-band SAR (1.257 GHz), which uses longer-wavelength radiowaves to track changes under thick forests and soil and deformations on the ground, and an S-band SAR (3.2 GHz), which uses shorter-wavelength radiowaves to capture surface details, such as crops and water surfaces.
Although NISAR will operate globally at L‑band, ISRO has reserved routine, planned acquisitions with the S‑band SAR over India. The latter acquisitions have extended sensitivity to biomass, better soil‑moisture retrieval, and mitigate ionospheric noise — all capabilities tuned to India's needs in agriculture, forestry, and disaster management.
Because the L‑band radar is the principal tool for NASA's mission goals, the instrument is expected to operate in up to 70% of every orbit. This said, operating both radars together is an official implementation goal so that mode conflicts over the Indian subcontinent are minimised.
Polarisation is the direction in which the electric field of some electromagnetic radiation, like radiowaves, oscillates. SAR can transmit and receive radar signals with horizontal or vertical polarisation. Using different combinations will allow the instruments to identify the structure and types of different surface materials, like soil, snow, crop or wood.
The swath width, i.e. the breadth of the bands on the ground the SARs will scan, is an ultra-wide 240 km. The radars' SweepSAR design will transmit this beam and, upon its return, digitally steer multiple small sub‑apertures in sequence, synthesising beams that sweep across the ground track. This scan‑on‑receive method allows the 240‑km swath without compromising resolution.
The resulting scans will have a spatial resolution of 3-10 m and centrimetre-scale vertical mapping — enough to spot impending land subsidence in cities, for example — depending on the mode. Each spot on the ground will be scanned once every 12 days.The satellite also features a large 12-m-wide mesh antenna.
NISAR will produce annual maps of aboveground woody biomass of 1 ha resolution and quarterly maps of active and inactive cropland. High-resolution maps of flooded versus dry areas will be available as well. During a disaster, NISAR can also be directed to collect data for 'damage proxy maps' to be delivered in under five hours.
This said, for certain acquisition modes, NISAR won't be able to achieve full global coverage at the highest resolution. Above roughly 60° latitude, every alternative observation will be skipped due to converging ground tracks. Similarly, some 10% of the surface may not be mapped from either direction (of the satellite's passage over the ground) in any given 12-day cycle.
How was NISAR built?
At the time the two space organisations agreed to build NISAR, NASA and ISRO decided each body would contribute equivalent‑scale hardware, expertise, and funding. ISRO's contributions in particular are mission‑critical.
The organisation supplied the I‑3K spacecraft bus, the platform that houses the controls to handle command and data, propulsion, and attitude, plus 4 kW of solar power. The same package also included the entire S‑band radar electronics, a high‑rate Ka‑band telecom subsystem, and a gimballed high‑gain antenna. The S‑band electronics were designed and built at the Space Applications Centre in Ahmedabad.
NASA's biggest contribution was the complete L‑band SAR system. NASA's Jet Propulsion Laboratory supplied all radio‑frequency electronics, the 12‑m antenna, a 9-m carbon-composite boom, and the instrument structure that carries both radars. The agency also fabricated the L‑band feed aperture and provided the supporting avionics, including a high‑capacity solid‑state recorder, a GPS receiver, an autonomous payload data system, and a Ka‑band payload communications subsystem.
The spacecraft was to be integrated at the ISRO Satellite Centre in Bengaluru after the two radars were mated at JPL. The final observatory‑level tests will therefore have taken place on Indian soil. After that the mission will lift off from Sriharikota onboard a GSLV Mk-II launch vehicle, with ISRO providing end‑to‑end launch services and documentation.
While themission operations are to be centred at the JPL Mission Operations Center, day‑to‑day flight operations will be led from the ISRO Telemetry, Tracking and Command Network in Bengaluru. Once NISAR is in orbit, most of its data will be sent through NASA's Near Earth Network facilities in Alaska, Svalbard (Norway), and Punta Arenas (Chile), which can together receive around 3 TB of radar data per day. They will be complemented by ISRO's ground stations in Shadnagar and Antarctica.
After the raw data arrive, India's National Remote Sensing Centre will process and distribute all products required for Indian users, mirroring NASA's pipeline.
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

‘NASA is under attack': Massive NASA layoffs see 20% staff fired amid Donald Trump's fund cuts; nationwide protests erupt
‘NASA is under attack': Massive NASA layoffs see 20% staff fired amid Donald Trump's fund cuts; nationwide protests erupt

Time of India

timean hour ago

  • Time of India

‘NASA is under attack': Massive NASA layoffs see 20% staff fired amid Donald Trump's fund cuts; nationwide protests erupt

Image: Nearly 20% of NASA's workforce — approximately 3,870 employees — have exited the agency following major funding cuts under the Trump administration's plan to downsize federal agencies. The layoffs stem from the Deferred Resignation Program, with officials describing the move as an effort to make NASA 'leaner and more efficient.' The decision has triggered widespread backlash from scientists, engineers, and space policy experts, who warn of serious risks to the agency's future missions. Nationwide protests erupted over the weekend, with current and former employees calling the move a direct threat to America's leadership in space. NASA fires thousands under federal downsizing drive The second round of the Deferred Resignation Program, which closed late Friday, saw roughly 3,000 resignations on top of 870 from the first wave of departures after Trump returned to office. Including regular attrition, NASA's workforce has shrunk from over 18,000 to around 14,000, marking a 20% reduction. Those resigning have been placed on administrative leave until their official exit. The move was orchestrated under the Department of Government Efficiency, currently led by Elon Musk. NASA insists that safety remains a top priority, yet internal experts are raising alarms about the loss of institutional knowledge and highly skilled personnel. With Mars and Moon missions central to the Trump administration's ambitions, critics argue these cuts threaten mission readiness. Former NASA officials and space industry leaders are questioning the agency's capacity to manage complex space programs in the coming years. by Taboola by Taboola Sponsored Links Sponsored Links Promoted Links Promoted Links You May Like Live Comfortably: 60m2 prefabricated bungalow for the elderly in Tebas Pre Fabricated Homes | Search Ads Search Now Undo Protests erupt over 'brain drain' and loss of legacy Protests have broken out in several cities including Houston, Washington D.C., and Cape Canaveral, where current and former NASA staff, union representatives, and supporters gathered to oppose the mass layoffs. A letter titled The Voyager Declaration, signed by hundreds of former employees, warns that irreplaceable expertise is being lost at a critical moment for U.S. space exploration. 'This is not streamlining,' one protestor said, 'this is sabotage.' Doubts over leadership as Trump's NASA pick falters Adding to the turmoil, NASA is still being led by an acting administrator after tech billionaire Jared Isaacman, Trump's initial nominee backed by Elon Musk, was rejected for the role. In the absence of permanent leadership, critics argue that the agency is navigating its most challenging transformation without a clear long-term vision or stable command structure.

ISRO-NASA Joint Satellite NISAR Set For Launch On July 30 From Sriharikota
ISRO-NASA Joint Satellite NISAR Set For Launch On July 30 From Sriharikota

India.com

time4 hours ago

  • India.com

ISRO-NASA Joint Satellite NISAR Set For Launch On July 30 From Sriharikota

The Indian Space Research Organisation (ISRO) on Sunday stated that the upcoming launch of NISAR, the first joint Earth observation satellite by ISRO and NASA, will mark a key milestone in Earth observation technology. NISAR will be launched from the Satish Dhawan Space Centre in Sriharikota, Andhra Pradesh, on July 30 at 17:40 IST. NISAR is the first mission of its kind, jointly developed by ISRO and NASA. It is an L- and S-band, global, microwave imaging mission, with the capability to acquire fully polarimetric and interferometric data, as per an official statement from ISRO. The unique dual-band Synthetic Aperture Radar of NISAR employs the advanced, novel SweepSAR technique, which provides high-resolution and large-swath imagery. NISAR will image the global land and ice-covered surfaces, including islands, sea-ice and selected oceans, every 12 days. The NISAR mission's primary objectives are to study land & ice deformation, land ecosystems, and oceanic regions in areas of common interest to the US and Indian science communities. The joint mission will accomplish multiple tasks, including measuring the woody biomass and its changes, tracking changes in the extent of active crops, understanding the changes in wetlands' extent, and mapping Greenland & Antarctica's ice sheets and the dynamics of sea ice and mountain glaciers. As per the statement, it will also help characterise land surface deformation related to seismicity, volcanism, landslides, and subsidence & uplift associated with changes in subsurface aquifers, hydrocarbon reservoirs, etc. "One mission to watch Earth. #ISRO #NASA builds, Earth benefits. This marks a key milestone in Earth observation technology. Stay tuned as we bring you closer to the mission that watches our world," ISRO said in a post on X. "The Spacecraft is built around ISRO's I-3K Structure. It carries two major Payloads viz., L & S- Band Synthetic Aperture Radar (SAR). The S-band Radar system, data handling & high-speed downlink system, the spacecraft and the launch system are developed by ISRO. The L-band Radar system, the high-speed downlink system, the Solid-State Recorder, the GPS receiver, and the 9 m Boom hoisting the 12m reflector are delivered by NASA. Further, ISRO takes care of the satellite commanding and operations; NASA will provide the orbit manoeuvre plan and RADAR operations plan. NISAR mission will be aided with ground station support from both ISRO and NASA for downloading of the acquired images, which, after the necessary processing, will be disseminated to the user community," the statement added. The data acquired through S-band and L-band SAR from a single platform will help scientists understand the changes happening to Planet Earth. The complex payloads and mainframe systems have been designed, developed, qualified and realised over a period of 8 to 10 years. "The S- Band SAR and L- Band SAR were independently developed, integrated and tested at ISRO and JPL/NASA respectively. The Integrated Radar Instrument Structure (IRIS), consisting of S - Band and L - Band SAR and other payload elements were intergrated and tested at JPL/NASA and delivered to ISRO," it stated. Mainframe satellite elements and payloads were assembled, integrated and tested at URSC/ISRO. The mission phases can be broadly classified into: Launch phase, Deployment Phase, Commissioning Phase and Science Phase. NISAR will be launched onboard the GSLV-F16 launch vehicle on July 30, 2025 from ISRO's Satish Dhawan Space Centre (SDSC), also referred to as Sriharikota High Altitude Range (SHAR), located in Sriharikota on the southeast coast of the Indian peninsula. It hosts a 12m dia large reflector which shall be deployed in-orbit 9m away from the satellite by a complex multistage deployable boom designed and developed by JPL/NASA. The first 90 days after launch will be dedicated to commissioning, or In-Orbit Checkout (IOC), the objective of which is to prepare the observatory for science operations. Commissioning is divided into sub-phases of initial checks and calibrations of mainframe elements followed by JPL engineering payload and instrument checkout. The science operations phase begins at the end of commissioning and extends till end of mission life. During this phase, the science orbit will be maintained via regular maneuvers, scheduled to avoid or minimize conflicts with science observations. Extensive calibration and validation (CalVal) activities will take place. The observation plan for both L and S-band instruments, along with engineering activities (e.g., maneuvers, parameter updates, etc.), will be generated pre-launch via frequent coordination between JPL and ISRO, the statement added.

Exoplanet 35 Light-Years Away Offers Hope for Life Beyond Earth
Exoplanet 35 Light-Years Away Offers Hope for Life Beyond Earth

NDTV

time4 hours ago

  • NDTV

Exoplanet 35 Light-Years Away Offers Hope for Life Beyond Earth

A team of scientists has studied the L 98-59 planetary system and confirmed the existence of a fifth planet, named L 98-59 f, in the star's habitable zone. The zone has conditions that could allow liquid water to exist. L 98-59 is a small red dwarf located just 35 light-years from Earth. In 2019, NASA's TESS space telescope found that it hosts three small transiting exoplanets. A fourth planet was revealed through radial velocity measurements with the European Southern Observatory's ESPRESSO spectrograph. Now, the team led by the Trottier Institute for Research on Exoplanets (IREx) at the Universite de Montreal has found a fifth one in the system. "These new results paint the most complete picture we've ever had of the fascinating L 98-59 system," said Cadieux in the press release. "It's a powerful demonstration of what we can achieve by combining data from space telescopes and high-precision instruments on Earth, and it gives us key targets for future atmospheric studies with the James Webb Space Telescope [JWST]." The exoplanet has a minimum mass 2.8 times that of Earth and has been categorised as a super-Earth. L 98-59 f follows an almost perfectly circular orbit around its star, receiving roughly the same amount of stellar energy as Earth. Its location in the habitable zone suggests that liquid water could exist on its surface under suitable atmospheric conditions, making it a potential candidate to support life. If L 98-59 f has an atmosphere, telescopes like the James Webb Space Telescope (JWST) may be able to detect water vapour, carbon dioxide or even biosignatures. Cadieux said that the discovery highlights the "diversity of exoplanetary systems" and also "strengthens the case for studying potentially habitable worlds around low-mass stars". "With its diversity of rocky worlds and range of planetary compositions, L 98-59 offers a unique laboratory to address some of the field's most pressing questions: What are super-Earths and sub-Neptunes made of? Do planets form differently around small stars? Can rocky planets around red dwarfs retain atmospheres over time?" René Doyon, co-author of the study, who is a professor at UdeM and the Director of IREx, said. The findings are reported in research that will appear in The Astronomical Journal titled "Detailed Architecture of the L 98-59 System and Confirmation of a Fifth Planet in the Habitable Zone."

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store