logo
This butterfly-shaped nebula owes its structure to 2 chaotic young stars

This butterfly-shaped nebula owes its structure to 2 chaotic young stars

Yahoo16-03-2025

When you buy through links on our articles, Future and its syndication partners may earn a commission.
A huge bipolar outflow of gas and dust, grown from the tumultuous birth of a double-star system, has formed a cosmic hourglass — and the James Webb Space Telescope imaged the scene in splendiferous detail.
Referred to as Lynds 483, or LBN 483,, this nebulous outflow is located about 650 light years away. It provides an ideal opportunity for the James Webb Space Telescope to learn more about the process of star formation. (Beverly Lynds was an astronomer who catalogued both bright nebulas – BN – and dark nebulas – DN – in the 1960s)
How does the birth of stars form a nebula like this? Well, stars grow by accreting material from their immediate environs of a gravitationally collapsed cloud of molecular gas. Yet, paradoxically, they are able to spit some material back out in fast, narrow jets or wider but slower outflows. These jets and outflows clash with gas and dust in the surroundings, creating nebulas like LBN 483.
The jets are formed by material with a rich abundance of varied molecules falling onto young protostars. In the case of LBN 483, there's not one but two protostars, the main star having a lower mass companion that was only discovered as recently as 2022 by a team led by Erin Cox of Northwestern University using ALMA, the Atacama Large Millimeter/submillimeter Array in Chile. The fact that there are two stars lurking at the heart of this butterfly-shaped nebula will be crucial, as we shall see.
We can't see those two protostars in the JWST's Near-Infrared Camera image — they are far too small on the scale of this image — but if we could imagine zooming in right to the heart of the nebula, between its two lobes, or "wings," we would find the two stars snugly ensconced within a dense, doughnut-shaped cloud of gas and dust. This cloud is supplemented with material from the gaseous, butterfly-shaped nebula beyond; the stars grow from material that accretes onto them from the dusty doughnut.
The jets and outflows are not constant but rather occur in bursts, responding to periods when the baby stars are overfed and belch out some of their accreted material. Magnetic fields play a crucial role here, directing these outflows of charged particles.
In LBN 483, the JWST is witnessing where these jets and outflows are colliding with both the surrounding nebulous womb but also earlier ejected material. As the outflows crash into the surrounding material, intricate shapes are formed. The fresh outflow plows through and responds to the density of the material its are encountering.
The whole scene is illuminated by the light of the burgeoning stars themselves, shining up and down through the holes of their dusty donuts, hence why we see the V-shaped bright lobes and dark areas between them where light is blocked by the torus.
The JWST has picked out intricate details in LBN 483's lobes, namely the aforementioned twists and crumples. The bright orange arc is a shock-front where an outflow is currently crashing into surrounding material. We can also see what look like pillars, colored light purple here (this is all false color, meant to represent different infrared wavelengths) and pointing away from the two stars. These pillars are denser clumps of gas and dust that the outflows haven't yet managed to erode, like how the towering buttes in the western United States have remained resolute to wind and rain erosion.
Observations by ALMA have detected polarized radio waves coming from the cold dust in the heart of the nebula — dust too cold for even JWST to detect. The polarization of these radio waves is caused by the orientation of the magnetic field that pervades LBN 483's inner sanctum. This magnetic field is parallel to the outflows that form LBN 483, but perpendicular to the inflow of material falling onto the two stars.
Remember, it is the magnetic field that ultimately drives the outflows, so how it behaves is important for sculpting the shape of the nebula. The dust polarization reveals that about 93 billion miles (150 billion kilometers/1,000 astronomical units) from the stars (similar to the distance of Voyager 1 from our sun), the magnetic field has a distinct 45-degree counter-clockwise kink. This may have an effect on how the outflows shape LBN 483.
This twist is a result of the movements of the growing stars. Currently, the two protostars are separated by 34 astronomical units (3.2 billion miles/5.1 billion kilometers), which is just a little farther than Neptune is from our sun. However, the leading hypothesis suggests that the two stars were born farther apart, and then one migrated closer to the other. This likely altered the distribution of angular momentum (the momentum of orbiting bodies) in the young system. Like energy, momentum has to be conserved, so the excess angular momentum would have been dumped into the magnetic field that is carried by the outflows in the same way that our sun's magnetic field is carried by the solar wind, causing the magnetic field to twist.
Studying young systems like the one powering LBN 483 is vital for learning more about how stars form, beginning with a giant cloud of molecular gas that becomes destabilized, undergoes gravitational collapse and fragments into clumps, each clump being the womb of a new star system. LBN 483 is particularly interesting in that it does not seem to be part of a larger star-forming region like the Orion Nebula, and so as an isolated spot of starbirth it may operate on slightly different rules to those huge stellar nurseries.
Related Stories:
— Is our universe trapped inside a black hole? This James Webb Space Telescope discovery might blow your mind
— This astronomer found a sneaky extra star in James Webb Space Telescope data
— James Webb Space Telescope investigates the origins of 'failed stars' in the Flame Nebula
By studying the shape of LBN 483 and the way that shape arises from outflows emanating from the protostars, and plugging those details into numerical simulations of star formation so that they can replicate what the JWST sees, astronomers can revise their models of star formation and better understand not only how all the stars in the night sky formed, but also the events that resulted in the birth of our own sun 4.6 billion years ago.
Who knows, perhaps 4.6 billion years ago, alien astronomers were watching our own sun form. And in another 4.6 billion years, the inhabitants of the binary system currently sitting snugly within LBN 483 could be doing the same thing, while at the same time watching the protracted death of our sun. These astronomers would be separated by billions of years, but connected by the immense longevity of the stars around them.

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

How one planet is revealing why it's so hard to detect life beyond Earth
How one planet is revealing why it's so hard to detect life beyond Earth

Yahoo

time44 minutes ago

  • Yahoo

How one planet is revealing why it's so hard to detect life beyond Earth

Sign up for CNN's Wonder Theory science newsletter. Explore the universe with news on fascinating discoveries, scientific advancements and more. A tiny sign revealed in April seemed like it might change the universe as we know it. Astronomers had detected just a hint, a glimmer of two molecules swirling in the atmosphere of a distant planet called K2-18b — molecules that on Earth are produced only by living things. It was a tantalizing prospect: the most promising evidence yet of an extraterrestrial biosignature, or traces of life linked to biological activity. But only weeks later, new findings suggest the search must continue. 'It was exciting, but it immediately raised several red flags because that claim of a potential biosignature would be historic, but also the significance or the strength of the statistical evidence seemed to be too high for the data,' said Dr. Luis Welbanks, a postdoctoral research scholar at Arizona State University's School of Earth and Space Exploration. While the molecules identified on K2-18b by the April study — dimethyl sulfide, or DMS, and dimethyl disulfide, or DMDS — are associated largely with microbial organisms on our planet, scientists point out that the compounds can also form without the presence of life. Now, three teams of astronomers not involved with the research, including Welbanks, have assessed the models and data used in the original biosignature discovery and got very different results, which they have submitted for peer review. Meanwhile, the lead author of the April study, Nikku Madhusudhan, and his colleagues have conducted additional research that they say reinforces their previous finding about the planet. And it's likely that additional observations and research from multiple groups of scientists are on the horizon. The succession of research papers revolving around K2-18b offers a glimpse of the scientific process unfolding in real time. It's a window into the complexities and nuances of how researchers search for evidence of life beyond Earth — and shows why the burden of proof is so high and difficult to reach. Located 124 light-years from Earth, K2-18b is generally considered a worthy target to scour for signs of life. It is thought to be a Hycean world, a planet entirely covered in liquid water with a hydrogen-rich atmosphere, according to previous research led by Madhusudhan, a professor of astrophysics and exoplanetary science at the University of Cambridge's Institute of Astronomy. And as such, K2-18b has rapidly attracted attention as a potentially habitable place beyond our solar system. Convinced of K2-18b's promise, Madhusudhan and his Cambridge colleagues used observations of the planet by the largest space telescope in operation, the James Webb Space Telescope, to study the planet further. But two scientists at the University of Chicago — Dr. Rafael Luque, a postdoctoral scholar in the university's department of astronomy and astrophysics, and Michael Zhang, a 51 Pegasi b / Burbidge postdoctoral fellow — spotted some problems with what they found. After reviewing Madhusudhan and his team's April paper, which followed up on their 2023 research, Luque and Zhang noticed that the Webb data looked 'noisy,' Luque said. Noise, caused by imperfections in the telescope and the rate at which different particles of light reach the telescope, is just one challenge astronomers face when they study distant exoplanets. Noise can distort observations and introduce uncertainties into the data, Zhang said. Trying to detect specific gases in distant exoplanet atmospheres introduces even more uncertainty. The most noticeable features from a gas like dimethyl sulfide stem from a bond of hydrogen and carbon molecules — a connection that can stretch and bend and absorb light at different wavelengths, making it hard to definitively detect one kind of molecule, Zhang said. 'The problem is basically every organic molecule has a carbon-hydrogen bond,' Zhang said. 'There's hundreds of millions of those molecules, and so these features are not unique. If you have perfect data, you can probably distinguish between different molecules. But if you don't have perfect data, a lot of molecules, especially organic molecules, look very similar, especially in the near-infrared.' Delving further into the paper, Luque and Zhang also noticed that the perceived temperature of the planet appeared to increase sharply from a range of about 250 Kelvin to 300 Kelvin (-9.67 F to 80.33 F or -23.15 C to 26.85 C) in research Madhusudhan published in 2023 to 422 Kelvin (299.93 F or 148.85 C) in the April study. Such harsh temperatures could change the way astronomers think about the planet's potential habitability, Zhang said, especially because cooler temperatures persist in the top of the atmosphere — the area that Webb can detect — and the surface or ocean below would likely have even higher temperatures. 'This is just an inference only from the atmosphere, but it would certainly affect how we think about the planet in general,' Luque said. Part of the issue, he said, is that the April analysis didn't include data collected from all three Webb instruments Madhusudhan's team used over the past few years. So Luque, Zhang and their colleagues conducted a study combining all the available data to see whether they could achieve the same results, or even find a higher amount of dimethyl sulfide. They found 'insufficient evidence' of both molecules in the planet's atmosphere. Instead, Luque and Zhang's team spotted other molecules, like ethane, that could fit the same profile. But ethane does not signify life. Arizona State's Welbanks and his colleagues, including Dr. Matt Nixon, a postdoctoral researcher in the department of astronomy at the University of Maryland College Park, also found what they consider a fundamental problem with the April paper on K2-18b. The concern, Welbanks said, was with how Madhusudhan and his team created models to show which molecules might be in the planet's atmosphere. 'Each (molecule) is tested one at a time against the same minimal baseline, meaning every single model has an artificial advantage: It is the only explanation permitted,' Welbanks said. When Welbanks and his team conducted their own analysis, they expanded the model from Madhusudhan's study. '(Madhusudhan and his colleagues) didn't allow for any other chemical species that could potentially be producing these small signals or observations,' Nixon said. 'So the main thing we wanted to do was assess whether other chemical species could provide an adequate fit to the data.' When the model was expanded, the evidence for dimethyl sulfide or dimethyl disulfide 'just disappears,' Welbanks said. Madhusudhan believes the studies that have come out after his April paper are 'very encouraging' and 'enabling a healthy discussion on the interpretation of our data on K2-18b.' He reviewed Luque and Zhang's work and agreed that their findings don't show a 'strong detection for DMS or DMDS.' When Madhusudhan's team published the paper in April, he said the observations reached the three-sigma level of significance, or a 0.3% probability that the detections occurred by chance. For a scientific discovery that is highly unlikely to have occurred by chance, the observations must meet a five-sigma threshold, or below a 0.00006% probability that the observations occurred by chance. Meeting such a threshold will require many steps, Welbanks said, including repeated detections of the same molecule using multiple telescopes and ruling out potential nonbiological sources. While such evidence could be found in our lifetime, it is less likely to be a eureka moment and more a slow build requiring a consensus among astronomers, physicists, biologists and chemists. 'We have never reached that level of evidence in any of our studies,' Madhusudhan wrote in an email. 'We have only found evidence at or below 3-sigma in our two previous studies (Madhusudhan et al. 2023 and 2025). We refer to this as moderate evidence or hints but not a strong detection. I agree with (Luque and Zhang's) claim which is consistent with our study and we have discussed the need for stronger evidence extensively in our study and communications.' In response to the research conducted by Welbanks' team, Madhusudhan and his Cambridge colleagues have authored another manuscript expanding the search on K2-18b to include 650 types of molecules. They have submitted the new analysis for peer review. 'This is the largest search for chemical signatures in an exoplanet to date, using all the available data for K2-18b and searching through 650 molecules,' Madhusudhan said. 'We find that DMS continues to be a promising candidate molecule in this planet, though more observations are required for a firm detection as we have noted in our previous studies.' Welbanks and Nixon were pleased that Madhusudhan and his colleagues addressed the concerns raised but feel that the new paper effectively walks back central claims made in the original April study, Welbanks said. 'The new paper tacitly concedes that the DMS/DMDS detection was not robust, yet still relies on the same flawed statistical framework and a selective reading of its own results,' Welbanks said in an email. 'While the tone is more cautious (sometimes), the methodology continues to obscure the true level of uncertainty. The statistical significance claimed in earlier work was the product of arbitrary modeling decisions that are not acknowledged.' Luque said the Cambridge team's new paper is a step in the right direction because it explores other possible chemical biosignatures. 'But I think it fell short in the scope,' Luque said. 'I think it restricted itself too much into being a rebuttal to the (Welbanks) paper.' Separately, however, the astronomers studying K2-18b agree that pushing forward on researching the exoplanet contributes to the scientific process. 'I think it's just a good, healthy scientific discourse to talk about what is going on with this planet,' Welbanks said. 'Regardless of what any single author group says right now, we don't have a silver bullet. But that is exactly why this is exciting, because we know that we're the closest we have ever been (to finding a biosignature), and I think we may get it within our lifetime, but right now, we're not there. That is not a failure. We're testing bold ideas.'

Private Japanese spacecraft crashes into moon in 'hard landing,' ispace says
Private Japanese spacecraft crashes into moon in 'hard landing,' ispace says

Yahoo

time8 hours ago

  • Yahoo

Private Japanese spacecraft crashes into moon in 'hard landing,' ispace says

When you buy through links on our articles, Future and its syndication partners may earn a commission. A spacecraft from Japan attempting to make the country's first private moon landing on Thursday instead crashed into the lunar surface in a disappointing second failure for its ispace builders. The Japanese company's Resilience spacecraft aimed to make a soft touchdown in the Mare Frigoris ("Sea of Cold") region of the moon's near side today (June 5) at 3:17 p.m. EDT (1917 GMT; 4:17 a.m. on June 6 Japan Standard Time). But telemetry from the lander stopped one minute and 45 seconds before the scheduled touchdown, apparently due to an equipment malfunction. It was reminiscent of ispace's first lunar landing attempt, in April 2023. The spacecraft also went dark during that try, which was eventually declared a failure. "We wanted to make Mission 2 a success but unfortunately we were able to land," ispace founder and CEO Takeshi Hakamada told reporters in a press conference a few hours after the landing try. Preliminary data based on telemetry from Resilience's final moments suggest that the lander's laser rangefinder experienced some sort of delays while measuring the probe's distance to the lunar surface. "As a result, the lander was unable to decelerate sufficiently to reach the required speed for the planned lunar landing," ispace officials wrote in an update. "Based on these circumstances, it is currently assumed that the lander likely performed a hard landing on the lunar surface." A hard landing means Resilience hit the moon's surface faster than planned. It's unlikely it survived in any condition to proceed with its two-week mission, or deploy the small Tenacious rover built by the European Space Agency. "For those who have supported us, we'd really like to apologize," Hakamada said, adding that ispace is committed to learning from its failures for future flights. "We have to continue on our mission to have moon exploration by [the] Japanese." Resilience stood 7.5 feet (2.3 meters) tall and weighs about 2,200 pounds (1,000 kilograms) when fully fueled. It's the second of ispace's Hakuto-R lunar landers, which explains the name of its current flight: Hakuto-R Mission 2. Hakuto is a white rabbit in Japanese mythology. The ispace folks first used the name for their entry in the Google Lunar X Prize, which offered $20 million to the first private team to soft-land a probe on the moon and have it accomplish some basic exploration tasks. The Prize ended in 2018 without a winner, but ispace carried on with its lunar hardware and ambitions. (The "R" in Hakuto-R stands for "reboot.") The company made big strides on Hakuto-R Mission 1, which successfully reached lunar orbit in March 2023. But that spacecraft couldn't stick the landing; it crashed after its altitude sensor got confused by the rim of a lunar crater, which it mistook for the surrounding lunar surface. ispace folded the lessons learned into Hakuto-R Mission 2, which launched on Jan. 15 atop a SpaceX Falcon 9 rocket from Florida's Space Coast. That was a moon-mission twofer for SpaceX: Resilience shared the rocket with Blue Ghost, a robotic lander built and operated by the Texas company Firefly Aerospace that carried 10 scientific instruments for NASA via the agency's Commercial Lunar Payload Services (CLPS) program. Blue Ghost arrived in orbit around the moon on Feb. 13 and landed successfully on March 2, pulling off the second-ever soft lunar touchdown by a private spacecraft. That mission went well from start to finish; the solar-powered Blue Ghost operated on the moon for two weeks as planned, finally going dark on March 16 after the sun set over its landing site. Resilience took a longer, more energy-efficient path to the moon, which featured a close flyby of Earth's nearest neighbor on Feb. 14. The lander arrived in lunar orbit as planned on May 6, then performed a series of maneuvers to shift into a circular path just 62 miles (100 kilometers) above the surface. That set the stage for Thursday's action. Resilience used a series of thruster burns to descend, decelerate and steer its way toward a landing in Mare Frigoris, a vast basaltic plain that lies about 56 degrees north of the lunar equator. But something went wrong when Resilience was just 192 meters above the lunar surface. It's not clear if Resilience was moving faster than expected because of the laser rangefinder data lag, or if that data lag was caused by the probe moving faster than planned, ispace said. "First, we have to figure out the root cause for the phenomenon we observed, and then we have to utilize them into Mission 3 and Mission 4," Hakamada said. If Resilience had succeeded today, it would be just the second soft lunar touchdown for Japan; its national space agency, JAXA, put the SLIM ("Smart Lander for Investigating Moon') spacecraft down safely in January 2024. Today's landing attempt was part of a wave of private lunar exploration, which kicked off with Israel's Beresheet lander mission in 2019. Beresheet failed during its touchdown try, just as ispace's first mission did two years ago. Pittsburgh-based Astrobotic had an abortive go in January 2024 with its Peregrine lunar lander, which suffered a crippling fuel leak shortly after launch and ended up crashing back to Earth. A month later, Houston company Intuitive Machines made history with its Odysseus craft, which touched down near the lunar south pole. Odysseus tipped over shortly after touchdown but continued operating for about a week. Its successor, named Athena, also toppled during its lunar touchdown on March 6 — just four days after Blue Ghost hit the gray dirt — with more serious consequences: The probe went dark within a few short hours. Peregrine, Blue Ghost, Odysseus and Athena all carried NASA science payloads. They were supported by the agency's CLPS program, which aims to gather cost-efficient science data ahead of crewed Artemis moon landings, the first of which is slated for 2027. Resilience carried five payloads, but they don't belong to NASA; Hakuto-R Mission 2 is not a CLPS effort. Three of these five are pieces of science gear that aim to help human exploration of the moon: a deep-space radiation probe developed by National Central University in Taiwan; a technology demonstration from the Japanese company Takasago Thermal Engineering Co. designed to produce hydrogen and oxygen from moon water; and an algae-growing experiment provided by Malaysia-based Euglena Co. (Algae could be an efficient food source for lunar settlers someday.) The other two payloads are a commemorative plate based on the "Charter of the Universal Century" from the Japanese sci-fi franchise Gundam and a tiny rover named Tenacious, which was built by ispace's Luxembourg-based subsidiary. Tenacious was designed to roll down onto the surface and collect a small amount of moon dirt, under a contract that ispace signed with NASA back in 2020. The rover carried a payload of its own — "Moonhouse," a tiny replica of a red-and-white Swedish house designed by artist Mikael Gensberg. The rover was supposed to lower the Moonhouse off its front bumper onto the lunar dirt, establishing a colorful artistic homestead in the stark gray landscape. None of that will come to pass, however, now that ispace has confirmed Resilience slammed into the lunar surfance instead of making a delicate four-point "soft landing." Related stories: — What's flying to the moon on ispace's Resilience lunar lander? — Japan's Resilience moon lander aces lunar flyby ahead of historic touchdown try (photo) — Japan's Resilience moon lander arrives in lunar orbit ahead of June 5 touchdown Despite the failed Resilience landing, ispace has big lunar goals. The company plans to launch two moon missions in 2027, Mission 3 and Mission 4, that will use a larger, more capable lander named Apex 1.0. That lander will weigh 2 tons, much larger than Resilience. "We know it's not going to be easy," ispace director and CFO Jumpei Nozaki said during the press conference. "But it's hard. It has some meaning and significance of trying." Nozaki said he and ispace felt extremely sorry to have disappointed the company's 80,000 supporters and stockholders, and were determined to learn from the experimence in the designs fo Mission 3 and Mission 4. Hakamada, when asked by a reporter if he or the team had cried after the failed landing, said it wasn't a time for crying. "Right now, we don't know the cause, so I can't get emotional and cry," he said. "I don't think that's a good idea. The most important thing is to find out the cause for this second failure." Editor's note: This story, originally posted at 5 p.m. ET, was updated at 9:30 p.m ET with new details from ispace's post landing attempt press conference. Editor-in-Chief Tariq Malik contributed to this report.

​​3 ancient Maya cities discovered in Guatemala, 1 with an 'astronomical complex' likely used for predicting solstices
​​3 ancient Maya cities discovered in Guatemala, 1 with an 'astronomical complex' likely used for predicting solstices

Yahoo

time12 hours ago

  • Yahoo

​​3 ancient Maya cities discovered in Guatemala, 1 with an 'astronomical complex' likely used for predicting solstices

When you buy through links on our articles, Future and its syndication partners may earn a commission. Archaeologists have discovered the remains of three Maya cities in the Petén jungle of Guatemala. The cities are about 3 miles (5 kilometers) apart and are arranged like a triangle, Guatemala's Ministry of Culture and Sports reported in a translated statement. The cities were settled sometime during a period that archaeologists call the "middle preclassic," which occurred between roughly 1000 and 400 B.C. They were inhabited until around 1,100 years ago, when many Maya cities in the region collapsed. The most important of the three cities is a site archaeologists are calling "Los Abuelos," which means "the grandparents." This name comes from two stone sculptures found at the site: one of a man and another of a woman. They are believed to depict ancestors of those who lived at the site, the statement said, noting that this city may have been a ceremonial center for those who lived in the area. Los Abuelos thrived during the Middle Preclassic (1000 B.C. to 400 B.C.) and Late Preclassic periods (400 B.C. to A.D. 300) before being abandoned and then reinhabited during the Late Classic period (A.D. 600 to 900). It has an astronomical complex with buildings positioned in such a way that solstices and equinoxes can be recorded precisely, the statement said. The remains of a human burial were found at the site, along with the remains of two felines, pottery vessels, shells and arrowheads. Archaeologists also discovered an altar in the shape of a frog and an engraved stone slab known as a stela. Once the Mayan writing on the stela is translated, it may provide more information about the site and the people who lived there. Another newly found city, which archaeologists named "Petnal," has a 108-foot-tall (33 meters) pyramid, the statement said. The top of the pyramid is flat and has a room that houses the remains of murals on its walls. Red, white and black from the murals can still be seen, but more research is needed to determine what the murals depict. Petnal was likely a political center, according to the statement. A frog-shaped altar was also found there. The frog is perceived as a symbol of fertility and rebirth in Maya mythology, wrote researchers Robert Sharer and Loa Traxler in their book "The Ancient Maya: Sixth Edition" (Stanford University Press, 2006). Frog altars have been found at other Maya sites and presumably would have been used in rituals. The third newly found city, which the archaeologists dubbed "Cambrayal," has a network of canals that originates in a water reservoir at the top of a palace, the statement reported. The main purpose of the canals may have been for removing waste. "It's especially exciting to learn about the Los Abuelos site," Megan O'Neil, an associate professor of art history at Emory University who was not part of the excavation team, told Live Science in an email. The stone sculptures found at the site "are especially poignant and are similar to many other examples of Maya people making offerings to vital sculptures and connecting with their ancestors by interacting with sculptures from the past." RELATED STORIES —'Stunning' discovery reveals how the Maya rose up 4,000 years ago —Ancient Maya 'blood cave' discovered in Guatemala baffles archaeologists —Genomes from ancient Maya people reveal collapse of population and civilization 1,200 years ago O'Neil noted that it was important that archaeologists found the remains of intact ceramic vessels during their excavation. In the past, this region was heavily looted and the pottery made by the ancient Maya was taken and sold on the international market. The new finds may "help reconnect items in private and museum collections with their places of origin and deposition, helping return memory to those ceramics, to these sites, and to Maya people living in this region and across the world," O'Neil said. The discoveries of the three cities, along with other newly found sites in the region, were made by a team of archaeologists from Slovakia and Guatemala who were part of the Uaxactún Archaeological Project (PARU), which searches for Maya ruins near the Maya city of Uaxactún. Since 2009, PARU has discovered 176 sites, although only 20 have been excavated. Live Science reached out to archaeologists involved with the research, but they did not answer questions by the time of publication.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store