This butterfly-shaped nebula owes its structure to 2 chaotic young stars
A huge bipolar outflow of gas and dust, grown from the tumultuous birth of a double-star system, has formed a cosmic hourglass — and the James Webb Space Telescope imaged the scene in splendiferous detail.
Referred to as Lynds 483, or LBN 483,, this nebulous outflow is located about 650 light years away. It provides an ideal opportunity for the James Webb Space Telescope to learn more about the process of star formation. (Beverly Lynds was an astronomer who catalogued both bright nebulas – BN – and dark nebulas – DN – in the 1960s)
How does the birth of stars form a nebula like this? Well, stars grow by accreting material from their immediate environs of a gravitationally collapsed cloud of molecular gas. Yet, paradoxically, they are able to spit some material back out in fast, narrow jets or wider but slower outflows. These jets and outflows clash with gas and dust in the surroundings, creating nebulas like LBN 483.
The jets are formed by material with a rich abundance of varied molecules falling onto young protostars. In the case of LBN 483, there's not one but two protostars, the main star having a lower mass companion that was only discovered as recently as 2022 by a team led by Erin Cox of Northwestern University using ALMA, the Atacama Large Millimeter/submillimeter Array in Chile. The fact that there are two stars lurking at the heart of this butterfly-shaped nebula will be crucial, as we shall see.
We can't see those two protostars in the JWST's Near-Infrared Camera image — they are far too small on the scale of this image — but if we could imagine zooming in right to the heart of the nebula, between its two lobes, or "wings," we would find the two stars snugly ensconced within a dense, doughnut-shaped cloud of gas and dust. This cloud is supplemented with material from the gaseous, butterfly-shaped nebula beyond; the stars grow from material that accretes onto them from the dusty doughnut.
The jets and outflows are not constant but rather occur in bursts, responding to periods when the baby stars are overfed and belch out some of their accreted material. Magnetic fields play a crucial role here, directing these outflows of charged particles.
In LBN 483, the JWST is witnessing where these jets and outflows are colliding with both the surrounding nebulous womb but also earlier ejected material. As the outflows crash into the surrounding material, intricate shapes are formed. The fresh outflow plows through and responds to the density of the material its are encountering.
The whole scene is illuminated by the light of the burgeoning stars themselves, shining up and down through the holes of their dusty donuts, hence why we see the V-shaped bright lobes and dark areas between them where light is blocked by the torus.
The JWST has picked out intricate details in LBN 483's lobes, namely the aforementioned twists and crumples. The bright orange arc is a shock-front where an outflow is currently crashing into surrounding material. We can also see what look like pillars, colored light purple here (this is all false color, meant to represent different infrared wavelengths) and pointing away from the two stars. These pillars are denser clumps of gas and dust that the outflows haven't yet managed to erode, like how the towering buttes in the western United States have remained resolute to wind and rain erosion.
Observations by ALMA have detected polarized radio waves coming from the cold dust in the heart of the nebula — dust too cold for even JWST to detect. The polarization of these radio waves is caused by the orientation of the magnetic field that pervades LBN 483's inner sanctum. This magnetic field is parallel to the outflows that form LBN 483, but perpendicular to the inflow of material falling onto the two stars.
Remember, it is the magnetic field that ultimately drives the outflows, so how it behaves is important for sculpting the shape of the nebula. The dust polarization reveals that about 93 billion miles (150 billion kilometers/1,000 astronomical units) from the stars (similar to the distance of Voyager 1 from our sun), the magnetic field has a distinct 45-degree counter-clockwise kink. This may have an effect on how the outflows shape LBN 483.
This twist is a result of the movements of the growing stars. Currently, the two protostars are separated by 34 astronomical units (3.2 billion miles/5.1 billion kilometers), which is just a little farther than Neptune is from our sun. However, the leading hypothesis suggests that the two stars were born farther apart, and then one migrated closer to the other. This likely altered the distribution of angular momentum (the momentum of orbiting bodies) in the young system. Like energy, momentum has to be conserved, so the excess angular momentum would have been dumped into the magnetic field that is carried by the outflows in the same way that our sun's magnetic field is carried by the solar wind, causing the magnetic field to twist.
Studying young systems like the one powering LBN 483 is vital for learning more about how stars form, beginning with a giant cloud of molecular gas that becomes destabilized, undergoes gravitational collapse and fragments into clumps, each clump being the womb of a new star system. LBN 483 is particularly interesting in that it does not seem to be part of a larger star-forming region like the Orion Nebula, and so as an isolated spot of starbirth it may operate on slightly different rules to those huge stellar nurseries.
Related Stories:
— Is our universe trapped inside a black hole? This James Webb Space Telescope discovery might blow your mind
— This astronomer found a sneaky extra star in James Webb Space Telescope data
— James Webb Space Telescope investigates the origins of 'failed stars' in the Flame Nebula
By studying the shape of LBN 483 and the way that shape arises from outflows emanating from the protostars, and plugging those details into numerical simulations of star formation so that they can replicate what the JWST sees, astronomers can revise their models of star formation and better understand not only how all the stars in the night sky formed, but also the events that resulted in the birth of our own sun 4.6 billion years ago.
Who knows, perhaps 4.6 billion years ago, alien astronomers were watching our own sun form. And in another 4.6 billion years, the inhabitants of the binary system currently sitting snugly within LBN 483 could be doing the same thing, while at the same time watching the protracted death of our sun. These astronomers would be separated by billions of years, but connected by the immense longevity of the stars around them.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
11 hours ago
- Yahoo
Scientists hit quantum computer error rate of 0.000015% — a world record achievement that could lead to smaller and faster machines
When you buy through links on our articles, Future and its syndication partners may earn a commission. Scientists have achieved the lowest quantum computing error rate ever recorded — an important step in solving the fundamental challenges on the way to practical, utility-scale quantum computers. In research published June 12 in the journal APS Physical Review Letters, the scientists demonstrated a quantum error rate of 0.000015%, which equates to one error per 6.7 million operations. This achievement represents an improvement of nearly an order of magnitude in both fidelity and speed over the previous record of approximately one error for every 1 million operations — achieved by the same team in 2014. The prevalence of errors, or "noise," in quantum operations can render a quantum computer's outputs useless. This noise comes from a variety of sources, including imperfections in the control methods (essentially, problems with the computer's architecture and algorithms) and the laws of physics. That's why considerable efforts have gone into quantum error correction. While errors related to natural law, such as decoherence (the natural decay of the quantum state) and leakage (the qubit state leaking out of the computational subspace), can be reduced only within those laws, the team's progress was achieved by reducing the noise generated by the computer's architecture and control methods to almost zero. Related: Scientists make 'magic state' breakthrough after 20 years — without it, quantum computers can never be truly useful "By drastically reducing the chance of error, this work significantly reduces the infrastructure required for error correction, opening the way for future quantum computers to be smaller, faster, and more efficient," Molly Smith, a graduate student in physics at the University of Oxford and co-lead author of the study, said in a statement. "Precise control of qubits will also be useful for other quantum technologies such as clocks and quantum sensors." Record-low quantum computing error rates The quantum computer used in the team's experiment relied on a bespoke platform that eschews the more common architecture that uses photons as qubits — the quantum equivalent of computer bits — for qubits made of "trapped ions." The study was also conducted at room temperature, which the researchers said simplifies the setup required to integrate this technology into a working quantum computer. Whereas most quantum systems either deploy superconducting circuits that rely on "quantum dots" or employ the use of lasers — often called "optical tweezers" — to hold a single photon in place for operation as a qubit, the team used microwaves to trap a series of calcium-43 ions in place. With this approach, the ions are placed into a hyperfine "atomic clock" state. According to the study, this technique allowed the researchers to create more "quantum gates," which are analogous to the number of 'quantum operations' a computer can perform, with greater precision than the photon-based methods allowed. Once the ions were placed into a hyperfine atomic clock state, the researchers calibrated the ions via an automated control procedure that regularly corrected them for amplitude and frequency drift caused by the microwave control method. In other words, the researchers developed an algorithm to detect and correct the noise produced by the microwaves used to trap the ions. By removing this noise, the team could then conduct quantum operations with their system at or near the lowest error rate physically possible. Using this method, it is now possible to develop quantum computers that are capable of conducting single-gate operations (those conducted with a single qubit gate as opposed to a gate requiring multiple qubits) with nearly zero errors at large scales. This could lead to more efficient quantum computers in general and, per the study, achieves a new state-of-the-art single-qubit gate error and the breakdown of all known sources of error, thus accounting for most errors produced in single-gate operations. This means engineers who build quantum computers with the trapped-ion architecture and developers who create the algorithms that run on them won't have to dedicate as many qubits to the sole purpose of error correction. RELATED STORIES —'The science is solved': IBM to build monster 10,000-qubit quantum computer by 2029 —Scientists forge path to the first million-qubit processor for quantum computers after 'decade in the making' breakthrough —'Quantum AI' algorithms already outpace the fastest supercomputers, study says By reducing the error, the new method reduces the number of qubits required and the cost and size of the quantum computer itself, the researchers said in the statement. This isn't a panacea for the industry, however, as many quantum algorithms require multigate qubits functioning alongside or formed from single-gate qubits to perform computations beyond rudimentary functions. The error rate in two-qubit gate functions is still roughly 1 in 2,000. While this study represents an important step toward practical, utility-scale quantum computing, it doesn't address all of the "noise" problems inherent in complex multigate qubit systems.
Yahoo
15 hours ago
- Yahoo
Rogue black hole found terrorizing unfortunate star in distant galaxy
When you buy through links on our articles, Future and its syndication partners may earn a commission. A rogue, middle-mass black hole has been spotted disrupting an orbiting star in the halo of a distant galaxy, and it's all thanks to the observing powers of the Hubble Space Telescope and Chandra X-ray Observatory. However, exactly what the black hole is doing to the star remains in question as there are conflicting X-ray measurements. Black holes come in different size classes. At the smaller end of the scale are the stellar-mass black holes born in the ashes of supernova explosions. At the top end of the scale are the supermassive black holes, which can grow to have many millions or billions of times the mass of our sun, lurking in the hearts of galaxies. In between those categories are intermediate-mass black holes (IMBH), which have mass ranging from hundreds up to 100,000 solar masses, or thereabouts. "They represent a crucial missing link in black hole evolution between stellar mass and supermassive black holes," Yi-Chi Chang of the National Tsing Hua University in Hsinchu, Taiwan said in a statement. The problem is that intermediate-mass black holes are hard to find, partly because they tend not to be as active as supermassive black holes or as obvious as a stellar-mass black hole when its progenitor star goes supernova. However, occasionally, an IMBH will spark to life when it instigates a tidal disruption event. This happens when a star or gas cloud gets too close to the black hole and gravitational tidal forces rip the star or gas cloud apart, producing bursts of X-rays. "X-ray sources with such extreme luminosity are rare outside galaxy nuclei and can serve as a key probe for identifying elusive IMBHs," said Chang. In 2009, Chandra spotted anomalous X-rays originating from a region 40,000 light-years from the center of a giant elliptical galaxy called NGC 6099, which lies 453 million light-years from us. This bright new X-ray source was called HLX-1, and its X-ray spectrum indicated that the source of the X-rays was 5.4 million degrees Fahrenheit (3 million degrees Celsius), a temperature consistent with the violence of a tidal disruption event. But what followed was unusual. The X-ray emissions reached a peak brightness in 2012 when observed by the European Space Agency's XMM-Newton X-ray space telescope. When XMM-Newton took another look in 2023, it found the X-ray luminosity had substantially dwindled. In the meantime, the Canada–France Hawaii Telescope had identified an optical counterpart for the X-ray emission, one that was subsequently confirmed by Hubble. There are two possible explanations for what happened. The first is that Hubble's spectrum of the object shows a tight, small cluster of stars swarming around the black hole. The black hole might have once been at the core of a dwarf galaxy that was whittled down — unwrapped like a Christmas present — by the gravitational tides of the larger NGC 6099. This process would have stolen away all the dwarf galaxy's stars to leave behind a free-floating black hole with just a small, tight grouping of stars left to keep it company. But the upshot of this is that the cluster of stars is like a stellar pantry to which the black hole occasionally goes to feast. It seems certain that a tidal disruption event involving one of these stars is what Chandra and Hubble have witnessed, but was the star completely destroyed? One possibility is that the star is on a highly elliptical orbit, and at its perihelion (closest point to the black hole) some of the star's mass is ripped away — but the star managed to survive for another day. This would potentially explain the X-ray light curve: The emission from 2009 was as the star was nearing perihelion, while the peak in 2012 was during perihelion, and the latest measurements in 2023 would be when the star was farthest from the black hole and not feeling its effects so much. We might then expect another outburst of X-rays during its next perihelion, whenever that might be. However, there's an alternative hypothesis: The star may have been stripped apart a piece at a time, forming a stream of material around the black hole. When Chandra first detected the X-ray emission from the tidal disruption event, this stream was just beginning to wrap back on itself, the self-intersection giving rise to shock-heating that produced X-rays. Then, the 2012 measurements would have been of a fully-fledged hot accretion disk of gas, the star by now completely ripped apart. The material within this disk would have spiraled into the black hole's maw, thus depleting the disk, which would explain why it is much less luminous in X-rays in 2023. Picking out the correct scenario apart will require further surveillance. "If the IMBH is eating a star, how long does it take to swallow the star's gas? In 2009, HLX-1 was fairly bright. Then, in 2012, it was about 100 times brighter, and then it went down again," Roberto Soria of the Italian National Institute for Astrophysics (INAF), who is a co-author of a new study describing the observations of HLX-1, said in the statement. "So now we need to wait and see if it's flaring multiple times, or if there was a beginning, a peak, and now it's just going to go down all the way until it disappears." Making new observations of an IMBH such as HLX-1 is key to better understanding the role they play in the black hole ecosystem. One model suggests that supermassive black holes might form and grow through the merger of many IMBH, but nobody knows how common intermediate-mass black holes are in the universe. "So if we are lucky, we're going to find more free-floating black holes suddenly becoming X-ray bright because of a tidal disruption event," said Soria. "If we can do a statistical study, this will tell us how many of these IMBHs there are, how often they disrupt a star, [and] how bigger galaxies have grown by assembling smaller galaxies." RELATED STORIES — Rogue black hole spotted on its own for the first time — Astronomers may have discovered the closest black holes to Earth — Hubble Telescope sees wandering black hole slurping up stellar spaghetti Alas, Chandra, XMM-Newton and Hubble all have small fields of view, meaning that they only see small patches of the sky. Because we don't know where the next tidal disruption event might take place, the chances of our space telescopes looking in the right place at the right time are slim. In essence, Chandra got lucky back in 2009. Fortunately, help is now on hand. The Vera C. Rubin Observatory comes fully online later this year to begin a 10-year all-sky survey, and spotting the flares of tidal disruption events will be a piece of cake for it. Once it finds such an event, Hubble and Chandra will know where to look and can follow up on it. IMBHs have remained mostly hidden for now, but their time in the shadows is coming to an end. The findings were published on April 11 in The Astrophysical Journal.
Yahoo
16 hours ago
- Yahoo
Scientists gave mice flu vaccines by flossing their tiny teeth — and it worked
When you buy through links on our articles, Future and its syndication partners may earn a commission. Scientists have developed a new, needle-free way to deliver vaccines: through the gumline. In a new proof-of-concept study, researchers successfully vaccinated mice against influenza by cleaning their teeth with dental floss coated with inactive flu viruses. Most vaccines are administered using a needle, an approach that has its drawbacks. For example, apprehension about pain from the injection and needle phobias can deter people from getting vaccinated. Additionally, injections require more medical expertise to administer than needle-free options, like mouth drops or nasal sprays, and are more challenging to store and distribute. But a floss-based vaccine could eliminate the pain and logistical challenges surrounding injections and "even be distributed through the postal mail," the researchers behind the development wrote in their study, published July 22 in the journal Nature Biomedical Engineering. Such a vaccine could potentially be deployed in "resource-limited settings with minimal training," they added, and be especially helpful in active outbreaks when vaccine coverage needs to be boosted quickly. Previous studies have shown that vaccinations delivered in the cheek or under the tongue trigger satisfactory immune responses. But it can be difficult to deliver adequate doses of these vaccines through mucosal tissues in the mouth — the lining that acts as a barrier between our body and the environment. Related: Acne vaccine: Experimental shot for common skin condition reaches clinical trials. Here's what you need to know. The researchers behind the vaccine floss found a creative solution: Researchers focusing on gum disease have found particular areas in the mouth that are very permeable, meaning molecules are easily absorbed by the tissue. One of these areas is called the junctional epithelium (JE). The JE is found on the tissue between teeth, at the spot where the tooth's surface meets the gum line. By secreting different molecules, the JE detects and defends against pathogens that try to get in through the gums. The study researchers thought that the JE's ability to allow molecules through and to stimulate an immune response made it a potential candidate for a vaccine site. To reach it, they needed something that could get into that small crevice between tooth and gum. So, they went out and bought some dental floss. To explore this concept, the researchers tested their hypothesis in mice. Once they'd figured out how to floss a mouse's teeth — turns out, it's a two-person job — they set up a flossing schedule to expose 50 mice to an inactive flu virus. Killed, or "inactivated" viruses cannot cause infection and are a common component of vaccines; they're used to immunize humans against diseases such as hepatitis A and polio, for example, and are found in some types of flu shot. One group of mice had their teeth flossed with the virus-coated floss three times, with two weeks between each dose. Then, a month after their final dose, they were exposed to an active flu virus. All survived, while a comparison group of mice that was left unvaccinated all died. Further testing found that the mice that had been vaccinated via the floss had a strong immune response, producing ample antibodies and many immune cells. This immune defense was found throughout the body — known as systemic immunity — and in their saliva and feces. "The floss-based vaccination induced both systemic and mucosal immunity, while conventional intramuscular shots largely stimulate systemic immunity," first study author Rohan Ingrole, a chemical engineer at Texas Tech University, told Live Science in an email. "Mucosal immunity is important because most of the pathogens enter through the mucosal routes," he emphasized. In theory, vaccine floss could thus have an edge over syringe vaccines by triggering this additional protection, but the team would like to directly compare the two methods in the future to validate this idea. RELATED STORIES —2-in-1 COVID-flu vaccine looks promising in trial — but experts say approval may be delayed —At-home flu vaccine approved by FDA — what to know —What are mRNA vaccines, and how do they work? Next, the researchers wanted to know if flossing could transfer compounds to the JE in humans. As an early test, they used a fluorescent marker and blue food coloring to coat a dental pick and had healthy volunteers floss their teeth with it. Photographs confirmed that a fair amount of the dye was transferred to the space between their teeth and gum, though just over 41% was left on the floss. The next step, the researchers said, is to translate the research to larger animals, which "can then lay the foundation for human testing in the near future," senior study author Harvinder Gill, a bioengineer at North Carolina State University, told Live Science in an email. This article is for informational purposes only and is not meant to offer medical advice.