
James Webb Telescope travels back in time by watching one spot for 120 hours
The James Webb Space Telescope (JWST) has delivered its latest Picture of the Month and it's nothing short of breathtaking.For 120 hours, Webb's powerful eyes were fixed on the colossal galaxy cluster Abell S1063, a cosmic behemoth located 4.5 billion light-years away in the constellation Grus.This deep-field observation reveals not only the cluster's own grandeur but also a stunning array of distant, faint galaxies from the Universe's earliest epochs.advertisement
Abell S1063, previously studied by the Hubble Space Telescope's Frontier Fields program, is renowned for its immense mass and its role as a gravitational lens.
This image showcases an incredible forest of lensing arcs around Abell S1063, which reveal distorted background galaxies. (Photo: Nasa)
The cluster's gravity is so intense that it bends and magnifies the light from galaxies far behind it, creating the glowing, warped arcs seen in the new JWST image.These arcs are not just beautiful—they serve as cosmic magnifying glasses, allowing astronomers to study galaxies that would otherwise be too faint and distant to detect.Webb's Near-Infrared Camera (NIRCam) took this investigation to new depths. By capturing nine separate snapshots across different near-infrared wavelengths and combining them into a single image, Webb accumulated a total of 120 hours of exposure.advertisementThis is the telescope's deepest look at a single target to date. The result is a 'forest' of lensing arcs, each one a distorted image of a galaxy from the Universe's distant past.This extraordinary image is part of the GLIMPSE observing program, which aims to probe the 'Cosmic Dawn'—the era when the first galaxies began to form, just a few million years after the Big Bang.The gravitational lensing effect of Abell S1063, combined with Webb's unmatched sensitivity, has enabled scientists to spot previously unseen features and a multitude of faint galaxies.The new deep-field view not only showcases the power of the JWST but also brings humanity closer to understanding the origins of the cosmos, offering a glimpse of the very first galaxies that lit up the Universe.Must Watch
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


Time of India
19 minutes ago
- Time of India
Hint of ‘life' beyond Earth? Study reveals ‘surprising' biological activity on a distant planet
In the age of scientific evolution, technological advancements, and space exploration, we have often pondered over this one question for years – is there any planet beyond Earth that could sustain what we know as 'life'? Any planet that might be habitable for living beings in the future? In April 2025, the scientific community was abuzz with a groundbreaking announcement: astronomers had detected dimethyl sulfide (DMS) in the atmosphere of exoplanet K2-18b, located 124 light-years from Earth. DMS is a compound produced solely by biological processes on Earth, primarily by marine phytoplankton. This discovery was hailed as the strongest evidence yet of potential extraterrestrial life beyond our solar system. However, just weeks later, scientists are urging caution and emphasizing that the initial excitement may have been premature. Why? While the detection of DMS is intriguing, it does not definitively prove the existence of life on K2-18b. The compound could also be produced by unknown non-biological processes, and further observations are needed to confirm its origin. As per Dr. Luis Welbanks, a postdoctoral research scholar at Arizona State University's School of Earth and Space Exploration, 'It was exciting, but it immediately raised several red flags because that claim of a potential biosignature would be historic, but also the significance or the strength of the statistical evidence seemed to be too high for the data.' What is K2-18b? K2-18b, classified as a "Hycean" world, is a super-Earth exoplanet, meaning it's larger and more massive than Earth, that orbits a red dwarf star called K2-18. It's located about 124 light-years away from Earth in the constellation Leo. The planet is in its star's habitable zone, meaning it could potentially have liquid water on its surface, according to NASA. The exoplanet has a hydrogen-rich atmosphere and a subsurface ocean. This environment could potentially support microbial life. In addition to DMS, the James Webb Space Telescope has detected methane and carbon dioxide in the planet's atmosphere, further suggesting conditions that might be conducive to life. However, despite these promising signs and excitement surrounding the same, scientists remain cautious. The detection of DMS alone is not sufficient to confirm the presence of life. As Professor Nikku Madhusudhan, of the University of Cambridge and the lead author of the April study , noted, "We have to question ourselves both on whether the signal is real and what it means." The initial excitement surrounding the discovery of DMS on K2-18b underscores the growing interest in the search for extraterrestrial life. However, it also highlights the complexities and challenges of interpreting data from distant exoplanets. Nikku Madhusudhan and his colleagues have conducted additional research that they say reinforces their previous finding about the planet. And it's likely that additional observations and research from multiple groups of scientists are on the horizon. The succession of research papers revolving around K2-18b offers a glimpse of the scientific process unfolding in real time. It's a window into the complexities and nuances of how researchers search for evidence of life beyond Earth — and shows why the burden of proof is so high and difficult to reach. However, the search for life beyond Earth continues. 'Are we really alone in this vast universe?' As scientists continue to analyze the data and conduct further observations, the prospective answers to that very question remain open. Analysis finds evidence for many exoplanets made of water and rock around small stars


Time of India
9 hours ago
- Time of India
Earth shook every 90 seconds for 9 days in 2023; scientists finally reveal the shocking reason
Earth shook every 90 seconds for 9 days in 2023 In September 2023, seismic monitoring stations around the world began to register an eerie, rhythmic signal. Every 90 seconds, the Earth appeared to pulse—faintly but persistently. The phenomenon lasted for nine days and returned a month later, leaving scientists puzzled. There was no accompanying earthquake, volcanic eruption, or explosion to explain the tremors. The source of the mystery was traced to the remote Dickson Fjord in East Greenland. At the time, theories ranged from submarine volcanic activity to secret military tests. Now, almost two years later, researchers from the University of Oxford have offered the first concrete explanation using next-generation satellite and machine learning technologies. What they uncovered reveals not only the cause of the pulses but also a broader warning about the climate crisis unfolding silently in the world's most remote corners. The Earth shook without warning: 2023's 90-second Arctic pulse For nine consecutive days in September 2023, and again in October, seismic stations recorded signals repeating every 90 seconds. These pulses were subtle—far weaker than earthquakes—but unusual because of their precise regularity and global reach. The signals came from the Arctic, specifically from the Dickson Fjord in East Greenland. The incident baffled geophysicists and prompted international investigations. With no explosion, tectonic activity, or obvious surface disturbance detected, the mystery deepened. Seiches vs. Tsunamis: Understanding the difference Initially, some suspected a tsunami might be responsible. But experts soon distinguished the phenomenon as a seiche—a lesser-known but powerful water oscillation. Tsunami: Caused by abrupt displacement of water due to earthquakes, volcanic activity, or landslides. It travels as a single massive wave. Seiche : Occurs when water in an enclosed space like a lake or fjord repeatedly sloshes back and forth, creating standing waves. These are often triggered by landslides, strong winds, or seismic activity. In this case, scientists confirmed the Dickson Fjord had experienced seiches—giant oscillating waves that created rhythmic seismic pulses without causing surface devastation. What caused the Greenland Seiches Researchers now confirm that the seismic pulses were the result of two massive glacier-induced rock and ice avalanches. These avalanches thundered into Dickson Fjord, displacing enormous volumes of water and generating tsunami-like waves with an initial height of up to 7.9 meters. Due to the fjord's narrow and enclosed topography, the waves couldn't escape and instead bounced back and forth like water in a bathtub. These oscillations—seiches—persisted for days, producing low-frequency seismic energy detectable across continents. How NASA's SWOT satellite uncovered Greenland's hidden waves The game-changer was data from NASA and the French space agency CNES's Surface Water and Ocean Topography (SWOT) satellite, launched in December 2022. The satellite's Ka-band Radar Interferometer (KaRIn) allowed researchers to scan a 30-mile-wide swath of the ocean surface in high resolution—something no previous satellite system could do. Oxford scientists used SWOT to map subtle elevation shifts in the fjord's surface after the event. They observed slopes of up to two meters across the channel that reversed direction over time—clear signatures of standing wave motion. Supporting evidence: Machine learning and seismic models To fill in gaps in satellite data, scientists employed: Machine learning to reconstruct wave behavior over time. Crustal deformation data from sensors thousands of kilometers away. Weather pattern analysis, ruling out wind and tides as causes. This multidisciplinary approach confirmed that the rhythmic seismic pulses came from seiche-driven energy trapped in the fjord. Climate change's fingerprints are all over the event The most alarming takeaway from the study is the role of climate change. Warming Arctic temperatures are rapidly melting Greenland's glaciers, weakening adjacent slopes and increasing the frequency of catastrophic landslides. As lead researcher Thomas Monahan stated: 'Climate change is giving rise to new, unseen extremes. These changes are happening fastest in remote areas like the Arctic, where our ability to monitor them has historically been limited.' The study highlights how climate-driven geological events can have global seismic effects—often silently and without warning. Why it matters: A new era of Earth monitoring The incident and its resolution mark a turning point in Earth observation. Co-author Professor Thomas Adcock emphasized: 'This is a perfect example of how next-generation satellite data and advanced modeling can resolve phenomena that have long been mysteries. We're entering an era where we can better track tsunamis, storm surges, and even rogue waves.' Moreover, a Danish military vessel patrolling the fjord three days after the first pulse observed nothing out of the ordinary—underscoring how even massive events can leave little trace without advanced monitoring systems.


Economic Times
9 hours ago
- Economic Times
How will Earth take its last breath? New research gives a detailed description of how life on planet will meet its end
A new study, employing NASA's planetary modeling, predicts Earth's oxygen will vanish in roughly one billion years, much sooner than previously thought. Led by Toho University, the research highlights the sun's aging process as a key factor, causing increased water evaporation, rising temperatures, and a failing carbon cycle. Tired of too many ads? Remove Ads What has the research revealed? Tired of too many ads? Remove Ads Researchers shorten Earth's lifeline A groundbreaking study by researchers at Toho University, using NASA's advanced planetary modeling, has predicted a major shift in Earth's atmosphere that could make life as we know it in Nature Geoscience, the research suggests that Earth's oxygen could vanish in about one billion years—shedding new light on the long-term evolution of our planet's team ran 400,000 simulations to model how Earth's atmosphere might change as the sun grows hotter with age. While the predicted changes lie far in the future, the findings offer critical insights into planetary science and the eventual fate of Earth's study titled "The Future Lifespan of Earth's Oxygenated Atmosphere" explores a future in which oxygen becomes increasingly scarce due to natural changes in the planet's systems. Led by Kazumi Ozaki, an assistant professor at Toho University in Tokyo, the research examines the geological and astronomical factors influencing long-term shifts in Earth's role of the Sun One of the core factors leading to oxygen depletion is the sun's inevitable aging process. As the sun ages, it will gradually become hotter and brighter. This increase in solar radiation will significantly impact Earth's climate, leading to a series of irreversible changes:As temperatures rise, Earth's water bodies will evaporate more rapidly, increasing atmospheric water vapor levels. This warming will also cause surface temperatures to escalate, gradually creating conditions unsuitable for sustaining life. The heat will disrupt the carbon cycle—a crucial process that regulates atmospheric carbon dioxide—weakening its ability to maintain balance. As a result, plant life will begin to die off, stopping the production of oxygen through photosynthesis. Over time, these cascading effects will lead to a dramatic loss of oxygen in Earth's atmosphere, rendering the planet increasingly research revealed that as the carbon cycle deteriorates, the atmosphere will revert to a composition reminiscent of early Earth, characterized by high levels of methane and low oxygen. This transformation mirrors the state before the Great Oxidation Event—a period when Earth's atmosphere became rich in oxygen due to the proliferation of photosynthetic scientific models suggested that Earth's biosphere would last up to two billion years, primarily due to overheating and the eventual depletion of CO₂ necessary for photosynthesis. However, this new research narrows the timeframe, suggesting a much earlier end to oxygen Ozaki emphasized that while the eventual demise of Earth's biosphere was acknowledged, pinpointing the timing and the precise process of deoxygenation remained elusive. This study, using advanced supercomputer simulations, provides a clearer understanding by simulating numerous potential scenarios.