A Scientist Thinks the Universe Bounced Out of a Black Hole
Here's what you'll learn when you read this story:
A new hypothesis from physicists at the University of Portsmouth in the U.K. challenges the long-standing Big Bang Theory as the ultimate origin of the universe.
This new 'Black Hole Universe' hypothesis, suggests that our universe possibly 'bounced' from the formation of larger black hole in another parent universe.
While intriguing, the Big Bang Theory is the undisputed cosmological champ for a reason, so it'll take lots of rigorous experiments to confirm its theoretical conclusions.
Throughout human history, there has been no greater question than 'where do we come from?' This existential curiosity has spawned entire religions, philosophies, and (more recently) serious scientific inquiry. Amazingly, as science and technology have progressed over the past century, we've begun to actually answer that age-old question. Thanks to groundbreaking discoveries in the 20th century—not the least of which was the accidental discovery of the cosmic microwave background in the 1960s—we now know that the universe most likely formed from a rapid expansion of matter known formally as the Big Bang.
But just because the Big Bang is our best answer for the beginning of everything, that doesn't mean it's the only one. In the early years, the main competitor to Big Bang Cosmology was the Steady State Universe (though the discovery of the CMB largely put that idea to rest). But in recent years, new alternatives have emerged to challenge the Big Bang's cosmological supremacy. One of the latest in this contrarian family is detailed in a new paper published in the journal Physical Review D, in which physicists from the University of Portsmouth in the U.K. theorize that maybe our universe formed within an interior black hole of a larger parent universe.
Yeah, let's dig into it.
Comparisons between black holes and the cosmology of our universe make some sense—after all, both contain singularities of a sort and horizons beyond which we can't hope to glimpse. However, this new theory, which is called the 'Black Hole Universe,' suggests that our black hole-generated universe is just one step in a cosmological cycle driven by gravity and quantum mechanics.
'The Big Bang model begins with a point of infinite density where the laws of physics break down. This is a deep theoretical problem that suggests the beginning of the Universe is not fully understood,' Enrique Gaztanaga, lead author of the study from the University of Portsmouth, said in a press statement. 'We've questioned that model and tackled questions from a different angle—by looking inward instead of outward. Instead of starting with an expanding Universe and asking how it began, we considered what happens when an overdensity of matter collapses under gravity.'
The genesis of this theory and others like it stems from the fact that we simply don't know what goes on the heart of black hole. And because knowledge (like nature) abhors a vacuum, scientists begin crafting hypotheses in an attempt to understand this unknown. In Gaztanaga and his team's case, they've shown that a gravitational collapse doesn't necessarily end in a singularity, but can instead 'bounce' into a new expansion phase.
'Crucially, this bounce occurs entirely within the framework of general relativity, combined with the basic principles of quantum mechanics,' Gaztanaga's team said in a press statement. 'We now have a fully worked-out solution that shows the bounce is not only possible—it's inevitable under the right conditions. One of the strengths of this model is that it makes predictions that can be thoroughly tested.'
As a science coordinator on the ESA mission Analysis of Resolved Remnants of Accreted galaxies as a Key Instrument for Halo Surveys, or ARRAKIHS (a true master-class in science acronym-ing), Gaztanaga hopes to use the instrument's ability to analyze ultra-low surface brightness structures in the outskirts of galaxies to see if data points to a 'Black Hole Universe' or the undisputed scientific champ, the Big Bang.
Presenting alternative ideas to long-standing theories is a key function of the scientific method, as it rigorously tests what we think we know from new angles. Even if ARRAKIHS confirms our Big Bang suspicions (as it most likely will), this alternative hypothesis still take us one step closer to truly understanding a question that's followed our species for hundreds of thousands of years.
You Might Also Like
The Do's and Don'ts of Using Painter's Tape
The Best Portable BBQ Grills for Cooking Anywhere
Can a Smart Watch Prolong Your Life?
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
2 days ago
- Yahoo
A Scientist Thinks the Universe Bounced Out of a Black Hole
Here's what you'll learn when you read this story: A new hypothesis from physicists at the University of Portsmouth in the U.K. challenges the long-standing Big Bang Theory as the ultimate origin of the universe. This new 'Black Hole Universe' hypothesis, suggests that our universe possibly 'bounced' from the formation of larger black hole in another parent universe. While intriguing, the Big Bang Theory is the undisputed cosmological champ for a reason, so it'll take lots of rigorous experiments to confirm its theoretical conclusions. Throughout human history, there has been no greater question than 'where do we come from?' This existential curiosity has spawned entire religions, philosophies, and (more recently) serious scientific inquiry. Amazingly, as science and technology have progressed over the past century, we've begun to actually answer that age-old question. Thanks to groundbreaking discoveries in the 20th century—not the least of which was the accidental discovery of the cosmic microwave background in the 1960s—we now know that the universe most likely formed from a rapid expansion of matter known formally as the Big Bang. But just because the Big Bang is our best answer for the beginning of everything, that doesn't mean it's the only one. In the early years, the main competitor to Big Bang Cosmology was the Steady State Universe (though the discovery of the CMB largely put that idea to rest). But in recent years, new alternatives have emerged to challenge the Big Bang's cosmological supremacy. One of the latest in this contrarian family is detailed in a new paper published in the journal Physical Review D, in which physicists from the University of Portsmouth in the U.K. theorize that maybe our universe formed within an interior black hole of a larger parent universe. Yeah, let's dig into it. Comparisons between black holes and the cosmology of our universe make some sense—after all, both contain singularities of a sort and horizons beyond which we can't hope to glimpse. However, this new theory, which is called the 'Black Hole Universe,' suggests that our black hole-generated universe is just one step in a cosmological cycle driven by gravity and quantum mechanics. 'The Big Bang model begins with a point of infinite density where the laws of physics break down. This is a deep theoretical problem that suggests the beginning of the Universe is not fully understood,' Enrique Gaztanaga, lead author of the study from the University of Portsmouth, said in a press statement. 'We've questioned that model and tackled questions from a different angle—by looking inward instead of outward. Instead of starting with an expanding Universe and asking how it began, we considered what happens when an overdensity of matter collapses under gravity.' The genesis of this theory and others like it stems from the fact that we simply don't know what goes on the heart of black hole. And because knowledge (like nature) abhors a vacuum, scientists begin crafting hypotheses in an attempt to understand this unknown. In Gaztanaga and his team's case, they've shown that a gravitational collapse doesn't necessarily end in a singularity, but can instead 'bounce' into a new expansion phase. 'Crucially, this bounce occurs entirely within the framework of general relativity, combined with the basic principles of quantum mechanics,' Gaztanaga's team said in a press statement. 'We now have a fully worked-out solution that shows the bounce is not only possible—it's inevitable under the right conditions. One of the strengths of this model is that it makes predictions that can be thoroughly tested.' As a science coordinator on the ESA mission Analysis of Resolved Remnants of Accreted galaxies as a Key Instrument for Halo Surveys, or ARRAKIHS (a true master-class in science acronym-ing), Gaztanaga hopes to use the instrument's ability to analyze ultra-low surface brightness structures in the outskirts of galaxies to see if data points to a 'Black Hole Universe' or the undisputed scientific champ, the Big Bang. Presenting alternative ideas to long-standing theories is a key function of the scientific method, as it rigorously tests what we think we know from new angles. Even if ARRAKIHS confirms our Big Bang suspicions (as it most likely will), this alternative hypothesis still take us one step closer to truly understanding a question that's followed our species for hundreds of thousands of years. You Might Also Like The Do's and Don'ts of Using Painter's Tape The Best Portable BBQ Grills for Cooking Anywhere Can a Smart Watch Prolong Your Life?
Yahoo
2 days ago
- Yahoo
Monster black hole jet from the early universe is basking in the 'afterglow' of the Big Bang
When you buy through links on our articles, Future and its syndication partners may earn a commission. Astronomers have captured a ghostly image of an ancient supermassive black hole shooting a giant energy jet into the early universe. The ethereal structure is only visible thanks to the "afterglow" of the Big Bang and a crucial NASA space telescope that could soon be prematurely switched off forever. The striking image shows the light of quasar J1610+1811, shining from around 11.6 billion light-years from Earth, during the "cosmic noon" — a period of the universe between 2 billion and 3 billion years after the Big Bang. Quasars are supermassive black holes that shoot out giant, lightsaber-like beams of energy perpendicular to their swirling accretion disks. However, until now, researchers have not had a proper look at J1610+1811's energy jet, despite discovering the object back in 2018. The new image was captured with NASA's Chandra X-ray Observatory, which is fine-tuned to hunt some of the most powerful wavelengths of the electromagnetic spectrum. The research was uploaded to the preprint server arXiv on April 13 and has been accepted for future publication in The Astrophysical Journal. The researchers also presented their findings at the 246th meeting of the American Astronomical Society, held between June 8 and 12 in Anchorage, Alaska. Using the new image as a guideline, the team calculated that the quasar's jet is more than 300,000 light-years long, which is around three times wider than the Milky Way. High-energy particles within the jet are also likely shooting from the black hole at between 92% and 98% the speed of light. "The jet from J1610+1811 is remarkably powerful, carrying roughly half as much energy as the intense light from hot gas orbiting the black hole," which is among the fastest and hottest matter in the universe, NASA representatives wrote in a statement. Related: Behold the first direct image of a supermassive black hole spewing a jet of particles Despite their immense power, jets like J1610+1811's are hard to detect because they are often pointed away from Earth, which makes them appear much dimmer thanks to special relativity. However, Chandra could see this jet because it is "being illuminated by the leftover glow from the Big Bang itself," NASA representatives wrote. This afterglow is the cosmic microwave background (CMB), leftover radiation from just after the cosmos-birthing explosion that permeates the entire universe. During cosmic noon, the CMB was much more dense than the version we can currently detect from Earth, which is what creates the static heard on radios and seen on old televisions. As electrons from the black hole's jets shoot toward Earth, they collide with photons within the CMB and accelerate these light particles to become X-rays, which can be spotted by Chandra. Without the high density of the CMB during this period, the quasar would not have shone in X-ray light and the image would not have been possible. During the study, the researchers captured less-detailed images of another quasar, J1405+0415, which is also shining at us from the cosmic noon. The new findings could help shed light on why quasars and other supermassive black holes grew faster and larger during this period than at any other point in the universe's history. Chandra was launched in July 1999 and has since revolutionized X-ray astronomy. Today, it is still making new discoveries, including a fracture in a "cosmic bone" and never-before-seen types of pulsars. However, despite having an estimated 10 years of operational lifespan remaining, the space telescope's future is in doubt, due to some NASA funding problems in 2024 and the Trump administration's proposed budget cuts for 2026, which would be the largest in the agency's history. If the latest cuts are approved, Chandra will likely be switched off permanently. The loss of Chandra would be equivalent to an "extinction-level event" for X-ray astronomy in the United States, according to the website RELATED STORIES —Biggest black hole jets ever seen are as long as 140 Milky Ways —Scientists make lab-grown black hole jets —'Very rare' black hole energy jet discovered tearing through a spiral galaxy shaped like our own "I'm horrified by the prospect of Chandra being shut down prematurely," Andrew Fabian, an X-ray astronomer at the University of Cambridge, told Science magazine in 2024. "If you start doing deep cuts so abruptly, you will lose a whole generation [of X-ray astronomers]," Elisa Costantini, an astronomer at the Netherlands Institute for Space Research, added in an interview with Science. It will leave "a hole in our knowledge" of high-energy astrophysics, she said.
Yahoo
2 days ago
- Yahoo
Scientists sound alarm over rising threat that's contaminating water supplies around the world: 'What happens next depends on how quickly we respond'
Rising sea levels are elevating salt content in coastal regions, contaminating soil and freshwater supplies around the world, according to experts in a story from Planet overheating, driven by burning fossil fuels for more than a century, is contributing to ocean warming and land ice melt. As a result, high tides are traveling farther inland. The rising salt water is causing floods from Miami to Bangkok, all according to NASA. Higher salinity is quickly changing the ecosystem in the Bengal Delta in Bangladesh, putting at risk rice paddies, mangrove forests, and other parts of the environment where 150 million people live, per "What we're seeing … is not just a local crisis, it's a signal of what's coming for low-lying coastal areas around the world," Mohammad Hoque, a researcher at England's University of Portsmouth, said in the story. He examined rising tides as part of a 17-year study in the region involving other institutions. The results showed that salinity levels started jumping more intensely in the mid-2000s, according to The National Oceanic and Atmospheric Administration reported that global sea levels have increased between 8 and 9 inches since 1880. "Model projections show that even a modest [11.8-inch] rise in sea level could significantly increase salinization in these areas," per The inflow doesn't just contaminate inland water. reported that it also makes farm soil barren, which impacts the food supply by reducing crop yields, damaging irrigation, and pushing "families toward debt or migration." Our use of land for farming is a main driver of biodiversity loss, according to the United Nations. Stunningly, the agency said that "human activity" has altered 70% of iceless land. Incoming salt water is changing more acreage on coastal fringes. While every extreme storm and flood event can't be linked to our planet's overheating, the experts at NASA said Earth's warming is increasing the likelihood of more severe storms, including cyclones and hurricanes, that rush more seawater ashore. Do you think your city has good air quality? Definitely Somewhat Depends on the time of year Not at all Click your choice to see results and speak your mind. Experts interviewed by are studying why certain areas, such as the Bengal Delta, are particularly susceptible to tidal floods. Underwater geography is even playing a role. Inland droughts and increased upstream river use are reducing the impact of natural systems that expel seawater. Salt-tolerant farming and better water storage can help, per the report. "What happens next depends on how quickly we respond," researcher Ashraf Dewan, from Australia's Curtin University, said. Anyone can take action by exploring critical issues about Earth's health. With a little knowledge, you can talk about the problems with friends and family, encouraging some easy hacks. For example, switching out old light bulbs for LEDs, which produce five times less air pollution, can shave your utility expenses significantly. For a bigger impact, consider adding a solar panel system with a battery backup at home. Now's a great time for the investment, as tax incentives worth up to 30% remain to help offset the cost. A government study found that solar panels save homeowners nearly $700 per year on average, even after expenses. EnergySage is a free online tool that can help you navigate the incentives and find an installer, with savings up to $10,000. The setups provide low-cost, clean energy with blackout protection. Join our free newsletter for good news and useful tips, and don't miss this cool list of easy ways to help yourself while helping the planet.