logo
Officials surprised to find major public works project completed by wild animals: 'Better than when we design it on paper'

Officials surprised to find major public works project completed by wild animals: 'Better than when we design it on paper'

Yahoo30-04-2025
Nature stepped in after a crucial project in the Czech Republic stalled, surprising local authorities and saving them the equivalent of nearly $1.5 million.
As reported by Radio Prague International, a beaver colony in the Brdy region became an overnight sensation when officials realized the creatures had built a dam exactly where they needed it.
"Beavers always know best. The places where they build dams are always chosen just right — better than when we design it on paper," said Jaroslav Obermajer, head of the Central Bohemian office of the Czech Nature and Landscape Protection Agency, or AOPK.
Despite the beavers' sudden fame, Gerhard Schwab, the Federal Nature Conservation Association's beaver manager for the southern part of Bavaria, told National Geographic he didn't buy the idea that the creatures completed the dam in one night.
"I could as well believe that the pyramids were built in one week," he said, suggesting that the construction likely occurred over several weeks before people noticed.
While beavers can sometimes create problems for humans — like when a Lanškroun-area dam ended up flooding fields and a railway line, as AOPK spokeswoman Karolína Šůlová pointed out to Radio Prague International — they can also help prevent flooding and create firebreaks, which protect property by stopping or slowing wildfires.
And as opposed to human-built dams that frequently disrupt the protective natural balance of ecosystems, reducing water quality and biodiversity, the new no-cost Brdy dam is expected to support numerous wetland species, including frogs and the rare stone crayfish.
Beaver-built dams can provide benefits beyond what may be initially apparent, too, according to science journalist Ben Goldfarb, who discussed the matter with National Geographic.
"At this point, nothing that beavers do surprises me," said Goldfarb, who explained that an Oregon beaver dam filtered heavy metals and other toxic pollutants around two times better than a multimillion-dollar stormwater treatment facility.
In Europe, native beavers were on the verge of extinction from hunting, but reintroduction efforts have helped them bounce back from the brink. Goldfarb gave local Czech authorities props for recognizing how the creatures' dam was a boon to the nearby community.
Do you think governments should ban the production of gas-powered lawn equipment?
Absolutely
Yes — but not yet
I don't know
Heck no
Click your choice to see results and speak your mind.
"Instead of saying, 'That wasn't what we planned originally,' they recognized that these animals are filling that ecological function very well and said, 'We're going to let them keep doing it,'" he said.
Join our free newsletter for good news and useful tips, and don't miss this cool list of easy ways to help yourself while helping the planet.
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

How human hibernation could revolutionize medicine and get us to Mars
How human hibernation could revolutionize medicine and get us to Mars

National Geographic

time9 hours ago

  • National Geographic

How human hibernation could revolutionize medicine and get us to Mars

Putting people into sleep mode is a sci-fi concept that's a lot closer to becoming real than you might think. Erin Belback is part of an ongoing human trial backed by NASA that aims to replicate the effects of hibernation in humans—a potential tool for overcoming some of the physiological problems of long-duration spaceflight. Scientists at the University of Pittsburgh plan to monitor her exhaled breath and body temperature to study her metabolic rate for their research. Photograph by Rebecca Hale, National Geographic Photographs by Corey Arnold The test subject had slipped into what physician Clifton Callaway describes as a 'twilight kind of sleep.' Eighteen hours after Callaway's team at the University of Pittsburgh's Applied Physiology Lab started the man on a sedative that suppressed his body's natural shivering response, his internal temperature had sunk from 98.6°F to 95°F. His heart rate and blood pressure had dropped. His metabolism—and, along with it, his need for food, oxygen, and carbon dioxide removal—had plunged 20 percent. Yet the subject could still rise from his bed, shuffle to the bathroom to empty his bladder, and, when hungry, ring a bell to ask for food or a drink—alleviating the need for a catheter or intravenous lines and ensuring he could still respond and react. The man was one of five exceedingly fit volunteers, ranging in age from 21 to 54, who quietly dozed in the semidarkness—pretend astronauts on a nine-month journey to Mars. NASA had tasked Callaway, an expert in cardiac care and induced hypothermia, with figuring out a simple way to put human beings into a state that mimics some of the key features of hibernation without the use of a ventilator or immobilizing drugs, and careful dosing of dexmedetomidine did the trick. His subject, Callaway says now, was woozy, dreamy, but still able to function in an emergency if required—'just like a bear.' Humans in hibernation mode are a classic staple of space travel in science fiction movies, whether it's HAL 9000 fatally unplugging a few of his passengers in 2001: A Space Odyssey or Chris Pratt waking up Jennifer Lawrence too soon because he's lonely in Passengers. But NASA has grand ambitions of sending astronauts to Mars, for real, as soon as the 2030s, and putting humans in hibernation mode, for real, could be the key to achieving it, which is why both NASA and the European Space Agency are supporting studies like Callaway's. A bearlike state of hibernation could, in theory, help astronauts snooze through the tedium of extended space travel and limit crewmate conflict. Their slowed metabolism could help reduce cargo: Missions would require less food and oxygen, and consequently less fuel. Space agency-funded research is even exploring whether slowing a person's metabolism weakens the health impact of harmful radiation. This would be an encouraging boost for the viability of extended travel through space, where radiation is as much as 200 times greater than on Earth. In fact, when it comes to achieving the dream of crew missions to Mars, says ESA's chief exploration scientist Angelique Van Ombergen, space radiation 'is a big showstopper.' Robert Foote, a volunteer in the NASA-supported trial in Pittsburgh, is monitored by scientists after being asleep for 20 hours. By achieving hibernation on demand, researchers could potentially unlock a wide range of medical benefits, including extending the time that doctors have to treat strokes and heart attacks. Photograph by Tim Betler, UPMC Scientists aren't studying hibernation just so we can ship astronauts ever deeper into space, though. Its physiological superpowers could save countless lives here on Earth, if we can unlock the secrets to the mysterious molecular-level changes that shift animals in and out of a state of hibernation, or 'torpor'—a miraculously reversible state of dormancy characterized by extreme lethargy, a lowered body temperature and metabolic rate, and a host of other remarkable changes. 'It's a well-established principle,' Callaway explains, 'that at low temperatures, like in hibernating animals, you tolerate lack of oxygen, lack of blood flow better and longer.' But why? Why don't bears' muscles atrophy while they sleep? How come their blood doesn't clot? And what triggers the process to begin with? In their hunt for answers, scientists are now inching closer to their most ambitious discovery yet: a central switch in the brains of hibernating animals that activates the various beneficial phenomena of hibernation, all at once. Mimicking the colder body temperature of bears during hibernation, for instance, could lessen the severity of 'reperfusion injuries,' the often devastating damage that occurs after cardiac arrest when blood flow is restored to the oxygen-deprived tissues of the body, setting off massive inflammation, oxidative stress, and cell death. It could also help extend the narrow window of time that doctors have to provide critical care during strokes and heart attacks. A clearer understanding of how hibernating bears preserve muscle mass and turn on and off insulin resistance could have other benefits: It might help us treat chronic obesity and diabetes in humans. ICU patients can lose more than 10 percent of their muscle mass in seven days. Could an induced state of hibernation stall or even stop the decline? Scientists are searching beyond bears for the answers because, of course, bears aren't the only animals that hibernate. A team at Colorado State University is investigating how the 13-lined ground squirrel can rapidly fatten and then switch off its appetite before hibernation for clues to combating obesity. UCLA researchers examining the genes of yellow--bellied marmots have recently found that 'epigenetic aging' is 'essentially stalled' during the seven to eight months they hibernate each year. Experts in Germany are exploring how bats maintain blood circulation at low temperatures, with an eye to human hibernation applications. And biologists at the University of Alaska Fairbanks are studying a squirrel that can drop its body temperature by 70 degrees and heart rate down to five beats per minute and survive eight months in subzero temperatures. Their goal is to develop a 'hibernation mimetic' drug that might safely allow clinicians to place humans into an immediate state of hibernation—without a long prep time, in a rural hospital lacking advanced equipment, or even in an ambulance racing through the streets. It would instantly dial down cellular metabolism, slow cell death, and catalyze a whole host of other biological processes associated with hibernation. (New bat discovery could help humans hibernate during space travel.) To decode hibernation's mysteries, biologists like Heiko Jansen are carefully studying the world's most notorious hibernators: bears. The 11 grizzlies housed at the Washington State University Bear Center are onetime 'trouble' bears from Yellowstone National Park and their offspring. Today they are sleeping for the benefit of science. The center's grizzlies are monitored in camera-equipped dens as they snooze through the late stages of their hibernation. For the five months they rest, their metabolism slows dramatically, reducing their need for food and oxygen. Callaway's twilight sleep experiment provides a glimpse into what might be possible for humans, but what happens in the lab and in the wild are clearly two different things. Bears don't need drugs to settle in for the winter—they have a natural 'torpor switch,' he says, which is flipped through some process that we don't fully understand. And though they're unruly, bears still offer a good comparison for our own potential: They're at least closer to us in size than a rodent, and, perhaps most critically, their temperature drop during deep sleep is well within the range of human survivability. One bright afternoon in late March, biologist Heiko Jansen stood outside a fenced-in pasture at the Washington State University Bear Research, Education, and Conservation Center in Pullman and watched as a shaggy 300-pound female grizzly bear named Kio struggled to eat a marshmallow. Other than a serious case of bedhead and the glacial pace of Kio's chewing, there were few visible clues that the dangerous, disheveled giant with the four-inch claws was undergoing a profound metamorphosis. Looking from the outside, little about Kio's metabolic process seems applicable to humans. Ten days earlier, she rose from her bed of straw and began to slowly work through a feast of bear kibble, apples, and elk bones and leg meat. It was her first meal in five months. Her salivary glands were still sluggish. Then she pooped out a 'fecal plug' composed of plants, dried feces, dead cells, and hair lodged in her lower intestine. Those three key activities—rise, eat, poop out the plug—seem to have helped flip a series of microscopic genetic switches inside her cells, catalyzing the slow-motion reversal of a host of bizarre biological cycles her body had entered into over the winter. Kio's metabolism, which had been operating at one-quarter its normal speed, kicked into gear, more than doubling by the time she was struggling with the marshmallow. Her core body temperature, hovering about 12 degrees below normal, began to rise. Two of her heart's four chambers, which had all but shut down for the winter, reopened for business. Her fat cells, for months miraculously resistant to insulin, the hormone that tells the body when to absorb sugar, started to respond to it again. Her appetite, absent for months, rumbled to life. When the grizzlies begin to stir, in March, they are awake but drowsy—their bodies beginning the process of reversing their metabolic slowdown. This bear, Adak, will be rewarded with honey and other treats after presenting his legs for a blood draw. Five months earlier, back in November, when Kio lay down and packed it in for the winter, she stopped eating, her gut entered 'stasis,' her saliva glands shut down, and she began living on her own body fat. Over the following months, she burned roughly 20 percent, or 70 pounds, of her body weight. To facilitate this, her body became resistant to insulin, a good thing for hibernators. Humans who become insulin resistant often develop diabetes—clearly a bad thing. Bears can switch that resistance on and off, depending on the season, without health consequences. If we could understand how, maybe we could figure out a way for humans to do it too? (Hibernating bears could hold a clue to treating diabetes.) The notion got a boost of confidence in 2018, when a Canadian group published the first complete grizzly bear DNA sequence. A year later, Jansen headed up a team that used a technique known as RNA sequencing to identify which genes are activated in bear muscle, fat, and liver tissue samples before, during, and after hibernation. They found seasonal changes in more than 10,000 of a grizzly's 30,723 genes. Now, in order to decode how bears switch insulin resistance on and off, Jansen has been extracting stem cells from blood samples collected from Pullman's bears at different times of year, methodically eliminating individual genes and then growing colonies of fat cells in petri dishes to see what happens. 'We're not saying that we'll find something that can reverse diabetes,' Jansen offers. 'But at least by looking at a model system, the cells that change their sensitivity, we can begin to develop some clues as to what's going on.' Kio's cardiac function might also yield insights that help treat human blood--clotting disorders. While Kio was hibernating, her heart rate slowed from 80 to 100 beats per minute to about 10. Normally this would cause her blood to clot into dangerous blockages and induce a stroke—'if that happened to us,' says Jansen, 'we'd be dead'—but hibernating bears also experience a remarkable drop in their blood-clotting platelets. It was Kio's ability to maintain muscle tone, however, that particularly transfixed some of her researchers. Unlike humans, who begin to lose muscle mass within a week of inactivity, Kio rose from her hibernation bed as fit as if she'd spent the winter chasing chipmunks. Up in Alaska, researchers Vadim Fedorov and Anna Goropashnaya are trying to unlock the mystery of how bears do this—and test the hypothesis that humans might be able to as well. The Russian-born husband-and-wife team specialize in evolutionary genetics at the University of Alaska's Institute of Arctic Biology (IAB), in Fairbanks. When they began analyzing gene expression patterns in tissue samples collected from captive black bears nearly 20 years ago, the results shocked them. Seeing as how bears stop eating and slow their metabolism during hibernation, Fedorov and Goropashnaya assumed the gene activity involved in building new muscles would be dialed down to preserve energy. Instead, the genes were just as active and even appeared to ramp up. 'We checked it several times,' says Goropashnaya. 'We couldn't believe it.' At the university's Institute for Arctic Biology, Anna Goropashnaya and Vadim Fedorov are investigating how muscle tissue of squirrels and bears (squirrel tissue is projected on their lab wall for this image) is preserved in hibernation when the animals don't eat and barely move. The findings were 'illogical' but somehow correct. Scores of genes known to be part of muscle protein biosynthesis were turned up in what appeared to be a coordinated—and metabolically costly—frenzy of activity. The two presented their first paper on the phenomenon in 2011. Now, with the aid of newer DNA sequencing technologies, they're able to study twice as many genes and with far more specificity, which is what led them to the mTOR pathway, a well-known cellular 'dial' that also plays a key role in controlling the rate of cell division. Typically, when mammals are starved of nutrients, their bodies dial mTOR down to suppress cell regeneration and steer energy to protect existing cells. But in the muscles of hibernating bears, the researchers confirmed what they'd first observed years earlier: mTOR increased instead. Fedorov and Goropashnaya were stumped. If hibernating bears are building new muscle, where are they getting the nutrients to make it? Researchers at the Universities of Wisconsin and Montreal have explored one possibility: microbes. Early findings in other hibernators indicate that instead of producing urine when hibernating, animals recycle the nitrogen in urea, and microbes in their guts could be ingesting and metabolizing it into amino acids, which make new muscles. If Fedorov and Goropashnaya can identify a single, extra-powerful 'upstream' gene responsible for switching on this muscle regeneration, it could have profound medical implications. The muscles of bedbound ICU patients wouldn't melt away within weeks, and astronauts could build muscles while resting. But what if all the disparate and remarkable processes of hibernation could be globally activated all at once—with a drug? To find out, scientists are looking deeper into the animal kingdom to unlock the secrets of the most extreme hibernator of all. (It's not just bears: These hibernating animals may surprise you.) The arctic ground squirrel, a diminutive rodent with gold-tinted fur, a button nose, and a tiny pair of Bugs Bunny-like front incisors, can drastically drop its body temperature and heart rate, slow to one breath per minute, and survive months in subzero conditions. The squirrels are also, for the most part, far easier to study than bears. An arctic ground squirrel remains in hibernation in a lab at the Institute of Arctic Biology at the University of Alaska Fairbanks. 'Until they open their eyes,' says Kelly Drew, the affable, silver-haired neuroscientist who directs the Center for Transformative Research in Metabolism at the IAB, after digging through a nest of cotton and wood shavings to pull out a frozen, furry snowball. 'Then they can bite.' In the early 2000s, Drew persuaded the U.S. military to fund a search for the brain chemicals that trigger hibernation in the squirrels. If she could identify those chemicals, she suggested, she could then test them on humans, in hopes of developing new ways to cool wounded soldiers on the battlefield. Drew's first breakthrough with the squirrels arrived in 2005 when an undergraduate research assistant chanced upon a paper from a Japanese lab while combing through scientific literature. The Japanese group had actually achieved the opposite of what Drew hoped to do. They'd found a drug that woke hibernating hamsters by blocking their brain cells' response to a specific chemical called adenosine. Drew assigned a graduate student to inject a synthetic version of adenosine, a drug called 6-Cyclohexyladenosine, or CHA, directly into the brains of her squirrels. Rather than blocking adenosine, which is how the caffeine in your coffee works its magic, CHA replicates its effects. When the graduate student dosed a squirrel's brain in the summer, outside of hibernation season, nothing happened. But when he repeated it closer to hibernation season, the CHA put the animal into such a deep state of torpor, the student initially thought he had killed it. 'He was super sad because that's a big deal,' Drew recalls. 'He takes the animal out for the vet to do the necropsy. The vet gets the tools out, he's going to start cutting open this dead animal, and it starts to move.' Her lab had done it. They'd found a way to put a squirrel in hibernation mode, like flipping a switch. Temporarily removed from its refrigerated hibernation den and settled on a bed of wood shavings, this arctic ground squirrel remained in a state of torpor for over an hour before beginning to stir. The squirrels survive their long hibernation by warming up for short periods every few weeks. On the opposite side of the world, at the University of Bologna in Italy, around the same time Drew's grad student stumbled on that Japanese paper about adenosine, another grad student named Domenico Tupone was charting a similar path. The focus of his laboratory research wasn't hibernation per se but a component of it: identifying the brain circuits that regulate body temperature during sleep. His team suspected that a small patch of neurons at the base of an ordinary rat's brain helped convey temperature-control signals to the periphery of the body. They temporarily immobilized those neurons with an injection, then placed the rat in a cold, dark cage. The experiment validated their hypothesis. As Tupone and his colleagues watched, the rat sank into a state of hypothermia so extreme it should have proved fatal. That's when things got weird. Six hours and four injections later, the hypothermic rat was still alive. And when the team finally removed it from its cage and warmed it up, the rat behaved, at least outwardly, as if nothing had happened. Afterward, as Tupone and his colleagues examined the brain waves picked up by a web of electrodes attached to the rodent's skull, scientist Matteo Cerri made an observation that altered the course of Tupone's future research. The peaks and valleys of the brain waves looked familiar. Cerri had seen the same patterns in hibernating animals. But there was one crucial difference. Unlike arctic ground squirrels, rats do not naturally hibernate. Tupone had to know: If a non-hibernating animal could be safely induced into hibernation, then maybe humans could do it too? In the years that followed, Tupone obsessed over scraps of paper in dimly lit bars, sketching out what a brain circuit capable of triggering hibernation in humans might look like. In bed, he tossed and turned, fantasizing about a 'revolutionary' IV-administered drug akin to Drew's 'hibernation mimetic' that paramedics could use to slow cell death on the way to the hospital. He became convinced that if it could be accomplished safely, inducing natural torpor in humans would upend basic science. The next step for both researchers, though—human trials—presented their stiffest obstacle yet. In order to administer Drew's 'hibernation mimetic' to ground squirrels, her team often had to perform invasive brain surgeries. For humans, the drug would need to be delivered via IV. The trouble is, adenosine receptors are present throughout the body, and activating them globally can trigger unwanted side effects, including cardiac arrest. After four more years of frustrating trial and error, Drew paired the drug with a compound that fixed the heart attack problem, and she's currently trying to solve the additional obstacle of fluctuating blood glucose levels, which in extreme cases can cause seizures in lab animals and even death. 'It works; it definitely cools them,' Drew says. 'We're just trying to tweak it so it's as safe as possible.' Clinicians have lots of devices to regulate temperature, 'but the human body typically fights it. By avoiding that cold defense response, which is what our hibernation mimetic does, then the clinician has the ability to dial in whatever temperature they want.' In minutes, not hours. Tupone, meanwhile, was working on parallel tracks at Portland's Oregon Health & Science University under Shaun Morrison, one of the world's experts on the brain circuits that control body temperature. Tupone's primary focus was on extending the map of temperature--related circuits into new parts of the brain, but in his spare time, he continued to hunt for the elusive hibernation switch. Around 2016, he stumbled upon a curious biological phenomenon that convinced him he was getting close. He and Morrison were attempting to confirm their map of the brain's thermoregulatory control system, in an experiment similar to the one in which the unexpected survival of those hypothermic Italian rats had blown his mind. This time, Tupone used a small knife to sever the bundle of nerves running to the rat's brain stem, cutting off the pathway that relays temperature--control signals down to the body's periphery. Once again, though, Tupone's results seemed to flip the expected rule of mammalian physiology. Rather than disabling the ability of the rat to respond to heat or cold, Tupone's incision somehow enhanced it. When Tupone wrapped the rat in a plastic blanket and ran hot water over it, its body began generating even more heat. When he used freezing cold water, the rat's brain seemed to allow its body temperature to fall even faster. An arctic ground squirrel emerges from a burrow in the foothills of Alaska's Brooks Range shortly after its eight-month hibernation. Each fall, Colorado State University scientists working at the nearby Toolik Field Station collar squirrels with devices to track body temperature data and light, which tells them if a squirrel is in or out of its burrow. In the spring, new squirrels are ear-tagged and weighed before their summer of foraging begins. The long-term study is revealing how climate change is affecting the biology of these important hibernators. Tupone and Morrison quickly concluded they had discovered something profound. The results suggested that a second, previously undiscovered brain circuit capable of modulating body temperature existed—one that facilitated the transition in and out of hibernation. They named the phenomenon 'thermoregulatory inversion' (TI). But where exactly was this circuit, and how could it be activated? After eight years of trial and error, Tupone and Morrison published a paper this past January announcing they'd found a small patch of neurons in the rat's hypothalamus—the ventromedial periventricular area (VMPeA)—that, when activated, not only seems to slow metabolism, lower body temperature, and induce brain waves and cardiac patterns unique to hibernation but also sets in motion phenomena that flip the body's normal temperature-control system on its head, facilitating the transition into and out of the torpor state. They'd found it: the elusive 'torpor switch.' Tupone believes the switch is connected to an incomplete version of the hibernation circuitry that still exists in many animals. To disable it, he hypothesizes, evolution did the most efficient thing. It simply removed the connection between the circuitry and the switch that would flip it on automatically. 'It is like you have all the cables inside your walls to turn on a light,' he says, but you've removed the connection to the switch that controls that light. 'We think humans have all the circuitry.' Our switch, he believes, just isn't connected anymore. To back up his findings, Tupone is now collaborating with Kelly Drew's lab to find the analogous circuitry—and the switch—in arctic ground squirrels. And he's laying the groundwork for a drug of his own that can flip the switch in his rats without invasive brain surgery. Each advance, though, generates more mysteries. To flip their switch on and off in the study they published in January, Tupone and Morrison had to use invasive brain surgery and manually apply a drug to the general area where it was located. Even that infinitesimally small patch of the brain still contained millions of neurons, including an entire neighborhood of unrelated neurons surrounding it. To find a drug specific enough to give to humans without immense side effects, Tupone will need to identify the precise neurons around the switch and design a drug that will target only those involved in hibernation. That's just the tip of the iceberg, though. To suppress the shivering response in humans, anesthesiologists typically administer muscle relaxants or paralyzing drugs, which suppress breathing, so doctors have to intubate patients … which requires putting them into a medically induced coma. This is why induced hypothermia is not available outside hospitals. It's also not currently an option for stroke patients, because of the dangerous drop in blood pressure that often occurs during the gap between administering anesthesia and intubating a patient, which can deprive the brain of even more oxygen at a moment when dangerous blockages are already suffocating its cells. Rats don't hibernate. But what if they could? Neurologist Domenico Tupone and fellow researchers from the University of Oregon say they've identified a 'torpor switch' in rat brain neurons (projected on the wall) that can be activated to send the rodents into a deep state of hibernation. Identifying this circuitry in non-hibernators could be a breakthrough in the human hibernation effort. 'It can actually worsen a stroke,' says researcher Cal-laway, from the University of Pittsburgh. 'But boy, it sure would be nice to lower your body temperature and let your brain tolerate the stroke longer until I can get you to the cath lab and take that blood clot out.' As an emergency physician, Callaway understands better than most the potential applications for humans, as well as the challenges presented by making the leap from bears and squirrels to humans. He's been researching and refining the techniques used to induce hypothermia in cardiac and brain-injured patients since the 1990s, and he's also a former chair of the American Heart Association's Emergency Cardiovascular Care Committee, which is why NASA awarded him a grant through the Translational Research Institute for Space Health to explore whether his techniques can be applied to the metabolic needs of astronauts. So far, there are problems. The drop in blood pressure and heart rate in his five healthy volunteers was so extreme that those with cardiovascular or other medical conditions might not be able to tolerate it. And within days, all five of the 'pretend astronauts' had developed a tolerance to his sedative, suggesting, among other things, that its effectiveness would fade over time. Those are solvable problems, Callaway says. 'This is just the first step' in a process that he believes will take 10 to 15 years—a mere nap for Rip Van Winkle. 'There's a lot of science to be done,' he says. But he's excited by the progress: 'I don't think it's pie-in-the-sky anymore.' To keep the pretend astronauts inspired during the human trial, Callaway's team had plastered the walls of their lab with posters: a satellite floating in space above the swirling blues and whites of Earth; the cratered, gleaming surface of a moonlike planet; the rainbow-hued burst of starlight, radiating from a distant galaxy. For now, such destinations are accessible only in our dreams. But someday in the not too distant future, a real astronaut might awaken from a hibernation-like slumber to gaze on the real thing.

What is the Jurassic period and why did it end?
What is the Jurassic period and why did it end?

National Geographic

timea day ago

  • National Geographic

What is the Jurassic period and why did it end?

The heyday of dinosaurs, the Jurassic era saw Earth's climate change from hot and dry to humid and subtropical. The Jurassic period was characterized by a warm, wet climate that gave rise to lush vegetation and abundant life. Many new dinosaurs emerged—in great numbers. Above, Dimorphodon reptiles fly over a herd of Mamenchisaurus dinosaurs coming down to a river for a drink. Illustration by CoreyFord, Getty Images By National Geographic Staff Thanks to this rich record, we know that the Jurassic was the height of dinosaurs roaming a tropical Earth filled with ferns, flowering plants, and conifers. It was also a time when sea monsters, sharks, and blood-red plankton filled inland seas borne of crumbling landmasses. Here's what the Jurassic period was really like. ('Jaw-dropping' fossil reveals epic prehistoric battle) Environmental conditions during the Jurassic At the start of the Jurassic era, the breakup of the supercontinent Pangaea continued and accelerated. Laurasia, the northern hemisphere, broke up into North America and Eurasia. Gondwana, the southern half, began to break up by the middle Jurassic. (In 250 million years, this may be the only continent on Earth) The eastern portion—Antarctica, Madagascar, India, and Australia—split from the western half, Africa and South America. New oceans flooded the spaces in between. Mountains rose on the seafloor, pushing sea levels higher and onto the continents. All this water gave the previously hot and dry climate a humid and drippy subtropical feel. Dry deserts slowly took on a greener hue. Palm tree-like cycads were abundant, as were conifers such as araucaria and pines. ('Living fossil' cycad plants are actually evolution's comeback kings) Ginkgoes carpeted the mid- to high northern latitudes, and podocarps, a type of conifer, were particularly successful south of the Equator. Tree ferns were also present. (Huge fossil is oldest giant flowering tree in North America) The oceans, especially the newly formed shallow interior seas, teemed with diverse and abundant life. At the top of the food chain were the long-necked and paddle-finned plesiosaurs, giant marine crocodiles, sharks, and rays. Fishlike ichthyosaurs, squidlike cephalopods, and coil-shelled ammonites were abundant. Coral reefs grew in the warm waters, and sponges, snails, and mollusks flourished. Microscopic, free-floating plankton proliferated and may have turned parts of the ocean red. (See the microscopic world of plankton in stunning detail) Dinosaurs flourished during the Jurassic period. Species such as Harpactognathus, Camarasaurus, Ceratosaurus, Allosaurus, Camptosaurus, Marshosaurus, and Megalneusaurus (illustrated above) quickly dominated the world. Illustration by Sergey Krasovskiy,Jurassic period dinosaurs On land, dinosaurs were making their mark in a big way—literally. The plant-eating sauropod Brachiosaurus stood up to 52 feet (16 meters) tall, stretched some 85 feet (26 meters) long, and weighed more than 80 tons. (How the world's deadliest mass extinction actually helped the rise of dinosaurs) Diplodocus, another sauropod, was 90 feet (27 meters) long. These dinosaurs' sheer size may have deterred attack from Allosaurus, a bulky, meat-eating dinosaur that walked on two powerful legs. This story originally published on January 6, 2017. It was updated on August 18, 2025.

Scientists make key breakthrough that could solve major issue with EV batteries: 'The idea is to keep it simple'
Scientists make key breakthrough that could solve major issue with EV batteries: 'The idea is to keep it simple'

Yahoo

time3 days ago

  • Yahoo

Scientists make key breakthrough that could solve major issue with EV batteries: 'The idea is to keep it simple'

Czech researchers have developed a new method for recycling rare earth minerals from electric vehicle batteries using just water and basic laboratory conditions, according to a recent report from Radio Prague International. The Institute of Organic Chemistry and Biochemistry focused its research on neodymium magnets, the strongest permanent magnets known to man. These powerful components drive EVs, smartphones, and wind turbines — but their production creates massive environmental challenges. Traditional mining and refining processes require hundreds of reactors, generate radioactive waste, and produce enormous amounts of acids and toxic byproducts. "The idea is to keep it simple, something that doesn't require extremely difficult conditions that would be hard to reproduce on an industrial scale," IOCB researcher Kelsea Jones explained, per Radio Prague International. The team's method uses water as a solvent and operates at room temperature, eliminating the need for harsh chemicals or extreme conditions. The process employs chelating agents, or organic molecules that bond with metal ions. Scientists add these agents to dissolved magnets, creating compounds with individual rare earth elements that can then be filtered by weight. The team processed magnets through several separation cycles and obtained neodymium with 99.7% purity, more than enough to produce new magnets. Reusing battery materials will reduce the risk of toxins leaching into soil and groundwater, and it will decrease resource depletion — a problem that often creates unsafe mining operations. EVs already help to improve air quality in our cities and reduce pollution compared to gas-powered cars, and more accessible battery recycling could help to accelerate EV adoption by making them more cost-effective. The Czech researchers have secured patents for their EV battery recycling method and are seeking commercial partners to bring this technology to market. Their breakthrough is a great example of the innovation needed to build a cleaner, more sustainable future — one that benefits both people and the planet. For those looking to make their next car an EV, this new recycling technology could also mean that even more affordable options are ahead. Should America invest more in EV battery tech? Absolutely No way Only if it brings down prices Only if it helps us compete with China Click your choice to see results and speak your mind. Join our free newsletter for weekly updates on the latest innovations improving our lives and shaping our future, and don't miss this cool list of easy ways to help yourself while helping the planet.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store