logo
Astronomers Found the Most Self-Destructive Planet in the Sky

Astronomers Found the Most Self-Destructive Planet in the Sky

Stars often whip their planets with solar winds and radiation, pull them ever closer with gravity and sear them with heat. But a newfound planet exerts an unexpectedly strong—and ultimately self-destructive—influence on its star in return.
The star HIP 67522 is slightly larger than our sun and shines roughly 408 light-years away in the Scorpius-Centaurus star cluster. It's 17 million years old, a youngster by stellar standards, and has two orbiting planets that are even younger. The innermost of these two planets, a Jupiter-size gas giant called HIP 67522 b, orbits HIP 67522 at a distance of less than 12 times the star's radius—almost seven times closer than Mercury's distance from the sun in our Solar System. This in-your-face proximity, combined with HIP 67522's volatile teenage nature, has created a spectacle astronomers have never seen before: a planet that triggers powerful flares on the surface of its host star, leading to the planet's own slow destruction.
'In a way, we got lucky,' says Ekaterina Ilin, an astrophysicist at the Netherlands Institute for Radio Astronomy (ASTRON), who led the study on the HIP 67522 system, published on Wednesday in Nature. 'We took all the star-planet systems that we knew of and just went ahead looking for flares—sudden intense bursts of radiation coming from the star's surface.' Parsing through the data gathered by two space-based telescopes, NASA's TESS (Transiting Exoplanet Survey Satellite) and the European Space Agency's CHEOPS (Characterizing Exoplanet Satellite), Ilin's team noticed that HIP 67522's flares seemed to be synchronized with its closest planet's orbital period. And those flares were gigantic—'thousands of times more energetic than anything the sun can produce,' Ilin says.
On supporting science journalism
If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.
The orbiting gas giant likely sparks these powerful flares by perturbing the star's strong magnetic field lines as it passes by in its orbit. This sends waves of energy downward along the lines—and when those waves meet the star's surface, a flare bursts out. The star's magnetic loops are 'almost like a spring waiting to be let go,' Ilin says. 'The planet's just giving it this last push.' Based on the team's observations, HIP 67522 b triggers a flare once every Earth day or two.
And this action has severe consequences for the planet itself: Ilin estimates the unlucky gas giant gets six times more radiation than it would if it wasn't triggering flares and blasting away its own atmosphere. At this pace, Ilin's team says, HIP 67522 b will shrink from Jupiter's size to Neptune's in about 100 million years. 'Flaring might cut the lifetime of the planet's atmosphere in half,' she says.
Researchers had suspected this type of star-planet interplay might occur, but they had never previously seen it, says Antoine Strugarek, an astrophysicist at the French Alternative Energies and Atomic Energy Commission's (CEA's) center CEA Paris-Saclay, who was not involved in the new study. 'This is the first time we see very convincing evidence such interaction has been actually detected,' he says.
Ilin says it's too early to draw far-reaching conclusions from this first example of the phenomenon. As a next step, she says, researchers can compare HIP 67522 b with the other planet in the system, which orbits a bit farther from the star, to calculate how much mass the more closely orbiting world is actually losing through this process compared with the more distant one, which is likely only hit with random flares.
Another unanswered question is exactly how the flare triggering works. 'Is it a wave [of magnetic energy] that propagates from the planet?' Ilin wonders. She suggests that what happens could be similar to an effect that has been seen on the sun: smaller solar flares sometimes perturb nearby magnetic loops and tip them over the edge to snap and produce a larger flare.
But perhaps the most important question is how common the newly observed phenomenon is. For now, Ilin wants to focus on finding more systems where planets induce stellar flares that scientists can study. 'Once we figure out how it works, we can turn it into a planet-detection technique,' she says. Instead of searching for the planets themselves, researchers could look for stars that flare following a certain pattern—suggesting they, too, might have planets with a self-destructive bent.
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Two meteorites found in the Sahara could be from the solar system's least studied rocky planet, scientists say
Two meteorites found in the Sahara could be from the solar system's least studied rocky planet, scientists say

Yahoo

time6 hours ago

  • Yahoo

Two meteorites found in the Sahara could be from the solar system's least studied rocky planet, scientists say

Researchers suspect that two meteorites found in the Sahara Desert in 2023 may originally have come from Mercury, which would make them the first identified fragments of the solar system's innermost planet. The least studied and most mysterious of the solar system's rocky planets, Mercury is so close to the sun that exploring it is difficult even for probes. Only two uncrewed spacecraft have visited it to date — Mariner 10, launched in 1973, and MESSENGER, launched in 2004. A third, BepiColombo, is en route and due to enter orbit around the planet in late 2026. Scientists know little about Mercury's geology and composition, and they have never been able to study a fragment of the planet that landed on Earth as a meteorite. In contrast, there are more than 1,100 known samples from the moon and Mars in the database of the Meteoritical Society, an organization that catalogs all known meteorites. These 1,100 meteorites originated as fragments flung from the surfaces of the moon and Mars during asteroid impacts before making their way to Earth after a journey through space. Not every planet is likely to eject fragments of itself Earth-ward during collisions. Though Venus is closer to us than Mars is, its greater gravitational pull and thick atmosphere may prevent the launch of impact debris. But some astronomers believe that Mercury should be capable of generating meteors. 'Based on the amount of lunar and Martian meteorites, we should have around 10 Mercury meteorites, according to dynamical modeling,' said Ben Rider-Stokes, a postdoctoral researcher in achondrite meteorites at the UK's Open University and lead author of a study on the Sahara meteorites, published in June in the journal Icarus. 'However, Mercury is a lot closer to the sun, so anything that's ejected off Mercury also has to escape the sun's gravity to get to us. It is dynamically possible, just a lot harder. No one has confidently identified a meteorite from Mercury as of yet,' he said, adding that no mission thus far has been capable of bringing back physical samples from the planet either. If the two meteorites found in 2023 — named Northwest Africa 15915 (NWA 15915) and Ksar Ghilane 022 (KG 022) — were confirmed to be from Mercury, they would greatly advance scientists' understanding of the planet, according to Rider-Stokes. But he and his coauthors are the first to warn of some inconsistencies in matching those space rocks to what scientists know about Mercury. The biggest is that the fragments appear to have formed about 500 million years earlier than the surface of Mercury itself. However, according to Rider-Stokes, this finding could be based on inaccurate estimates, making a conclusive assessment unlikely. 'Until we return material from Mercury or visit the surface,' he said, 'it will be very difficult to confidently prove, and disprove, a Mercurian origin for these samples.' But there are some compositional clues that suggest the meteorites might have a link to the planet closest to the sun. It's not the first time that known meteorites have been associated with Mercury. The previous best candidate, based on the level of interest it piqued in astronomers, was a fragment called Northwest Africa (NWA) 7325, which was reportedly found in southern Morocco in early 2012. Rider-Stokes said that was the first meteorite to be potentially associated with Mercury: 'It got a lot of attention. A lot of people got very excited about it.' Further analysis, however, showed a richness in chrome at odds with Mercury's predicted surface composition. More recently, astronomers have suggested that a class of meteorites called aubrites — from a small meteorite that landed in 1836 in Aubres, France — might come from Mercury's mantle, the layer below the surface. However, these meteorites lack a chemical compatibility with what astronomers know about the planet's surface, Rider-Stokes said. 'That's what's so exciting about the samples that we studied — they have sort of the perfect chemistry to be representative of Mercury,' he said. Most of what is known about Mercury's surface and composition comes from NASA's MESSENGER probe, which assessed the makeup of the planet's crust from orbit. Both meteorites from the study, which Rider-Stokes analyzed with several instruments including an electron microscope, contain olivine and pyroxene, two iron-poor minerals confirmed by MESSENGER to be present on Mercury. The new analysis also revealed a complete lack of iron in the space rock samples, which is consistent with scientists' assumptions about the planet's surface. However, the meteorites contained only trace amounts of plagioclase, a mineral believed to dominate Mercury's surface. The biggest point of uncertainty, though, is still the meteorites' age. 'They are about 4.5 billion years old,' Rider-Stokes said, 'and most of Mercury's surface is only about 4 billion years old, so there's a 500 million-year difference.' However, he said he thinks this discrepancy is not sufficient to rule out a Mercurian origin, due to the limited reliability of MESSENGER's data, which has been also used to estimate the age of Mercury's surface layer. 'These estimates are based on impact cratering models and not absolute age dating, and therefore may not be entirely accurate,' Rider-Stokes said. 'It doesn't mean that these samples aren't good analogs for regional areas on the surface of Mercury, or the early Mercurian crust that is not visible on the modern surface of Mercury.' With more modern instruments now available, BepiColombo, the European Space Agency probe that will start studying Mercury in early 2027, may be able to answer long-standing questions about the planet, such as where it formed and whether it has any water. Having material confirmed to have come from other planetary bodies helps astronomers understand the nature of early solar system's building blocks, Rider-Stokes said, and identifying fragments of Mercury would be especially crucial since a mission to gather samples from the planet closest to the sun and bring them back would be extremely challenging and expensive. Sean Solomon, principal investigator for NASA's MESSENGER mission to Mercury, said in an email that he believes the two meteorites described in the recent paper likely did not originate from Mercury. Solomon, an adjunct senior research scientist at Columbia University in New York City, was not involved with the study. The primary reason Solomon cited for his doubts is that the meteorites formed much earlier than the best estimates for the ages of rocks now on Mercury's surface. But he said he thinks the samples still hold research value. 'Nonetheless, the two meteorites share many geochemical characteristics with Mercury surface materials, including little to no iron … and the presence of sulfur-rich minerals,' he added. 'These chemical traits have been interpreted to indicate that Mercury formed from precursor materials much more chemically reduced than those that formed Earth and the other inner planets. It may be that remnants of Mercury precursor materials still remain among meteorite parent bodies somewhere in the inner solar system, so the possibility that these two meteorites sample such materials warrants additional study.' Solomon also noted that it was difficult to persuade the planetary science community that there were samples from Mars in meteorite collections, and that it took precise matching of their chemistry with data about the surface of Mars taken by the Viking probes to convince researchers to take a closer look. Lunar meteorites were also not broadly acknowledged to be in meteorite collections until after the existence of Martian meteorites had been demonstrated in the 1980s, he added, even though the Apollo and Luna missions had returned abundant samples of lunar materials more than a decade earlier. Once samples are confirmed to be from a planetary body, Solomon said, they can provide crucial information not available from remote sensing by an orbiting spacecraft on the timing of key geological processes, the history of internal melting of the body, and clues to planet formation and early solar system processes. Rider-Stokes plans to continue the discussion around these meteorites at the annual meeting of the Meteoritical Society, which takes place in Perth this week. 'I'm going to discuss my findings with other academics across the world,' he said. 'At the moment, we can't definitively prove that these aren't from Mercury, so until that can be done, I think these samples will remain a major topic of debate across the planetary science community.' Editor's Note: A version of this story's headline has been updated to clarify that the samples are thought to possibly be from the solar system's least studied rocky planet.

Magic mushrooms live up to their name by appearing to slow ageing
Magic mushrooms live up to their name by appearing to slow ageing

Yahoo

time18 hours ago

  • Yahoo

Magic mushrooms live up to their name by appearing to slow ageing

Psychedelic mushrooms are sometimes called 'magic' for their hallucinogenic effects which some proponents believe make them think more clearly and see things they would never ordinarily perceive. But going by findings published in Nature Partnering Journal Aging, the easily-harvested and widely-available wild fungi could be called magic for another reason: they appear to have anti-ageing properties. According to Baylor College of Medicine and Emory University in the US, the active psychedelic compound in the mushroom, known as psilocybin, "may extend both cellular and organismal lifespans." The team said that psilocybin "reduced multiple hallmarks of ageing in cells" and, depending on the dosages, "extended cellular lifespan up to 57%." The researchers also carried out tests on mice that showed psilocybin improving survival in older rodents. The mushrooms, and psilocybin in particular, have been shown to help depression patients and, but the physical effects outside the brain have gone uncharted. According to the research team, there are around 150 studies ongoing or recently completed looking at psilocybin's potential to treat not only depression but also cognitive disorders such as dementia. Last month, the American Cancer Society published findings of a second phase of tests that showed a "significant" reduction in depression among more than half of participants two years on from receiving a 25-milligram dose of psilocybin. "Our findings suggest that psilocybin has potent effects on the entire body, including anti-ageing properties, which also may contribute to the plethora of observed beneficial clinical outcomes," said Louise Hecker, associate professor of medicine – cardiovascular research at Baylor. "Our study provides the first experimental evidence demonstrating that psilocybin impacts hallmarks of ageing," the team said.

Researchers may have solved mystery of Mercury's missing meteorites, but doubts remain
Researchers may have solved mystery of Mercury's missing meteorites, but doubts remain

CNN

time2 days ago

  • CNN

Researchers may have solved mystery of Mercury's missing meteorites, but doubts remain

Researchers suspect that two meteorites found in the Sahara Desert in 2023 may originally have come from Mercury, which would make them the first identified fragments of the solar system's innermost planet. The least studied and most mysterious of the solar system's rocky planets, Mercury is so close to the sun that exploring it is difficult even for probes. Only two uncrewed spacecraft have visited it to date — Mariner 10, launched in 1973, and MESSENGER, launched in 2004. A third, BepiColombo, is en route and due to enter orbit around the planet in late 2026. Scientists know little about Mercury's geology and composition, and they have never been able to study a fragment of the planet that landed on Earth as a meteorite. In contrast, there are more than 1,100 known samples from the moon and Mars in the database of the Meteoritical Society, an organization that catalogs all known meteorites. These 1,100 meteorites originated as fragments flung from the surfaces of the moon and Mars during asteroid impacts before making their way to Earth after a journey through space. Not every planet is likely to eject fragments of itself Earth-ward during collisions. Though Venus is closer to us than Mars is, its greater gravitational pull and thick atmosphere may prevent the launch of impact debris. But some astronomers believe that Mercury should be capable of generating meteors. 'Based on the amount of lunar and Martian meteorites, we should have around 10 Mercury meteorites, according to dynamical modeling,' said Ben Rider-Stokes, a postdoctoral researcher in achondrite meteorites at the UK's Open University and lead author of a study on the Sahara meteorites, published in June in the journal Icarus. 'However, Mercury is a lot closer to the sun, so anything that's ejected off Mercury also has to escape the sun's gravity to get to us. It is dynamically possible, just a lot harder. No one has confidently identified a meteorite from Mercury as of yet,' he said, adding that no mission thus far has been capable of bringing back physical samples from the planet either. If the two meteorites found in 2023 — named Northwest Africa 15915 (NWA 15915) and Ksar Ghilane 022 (KG 022) — were confirmed to be from Mercury, they would greatly advance scientists' understanding of the planet, according to Rider-Stokes. But he and his coauthors are the first to warn of some inconsistencies in matching those space rocks to what scientists know about Mercury. The biggest is that the fragments appear to have formed about 500 million years earlier than the surface of Mercury itself. However, according to Rider-Stokes, this finding could be based on inaccurate estimates, making a conclusive assessment unlikely. 'Until we return material from Mercury or visit the surface,' he said, 'it will be very difficult to confidently prove, and disprove, a Mercurian origin for these samples.' But there are some compositional clues that suggest the meteorites might have a link to the planet closest to the sun. It's not the first time that known meteorites have been associated with Mercury. The previous best candidate, based on the level of interest it piqued in astronomers, was a fragment called Northwest Africa (NWA) 7325, which was reportedly found in southern Morocco in early 2012. Rider-Stokes said that was the first meteorite to be potentially associated with Mercury: 'It got a lot of attention. A lot of people got very excited about it.' Further analysis, however, showed a richness in chrome at odds with Mercury's predicted surface composition. More recently, astronomers have suggested that a class of meteorites called aubrites — from a small meteorite that landed in 1836 in Aubres, France — might come from Mercury's mantle, the layer below the surface. However, these meteorites lack a chemical compatibility with what astronomers know about the planet's surface, Rider-Stokes said. 'That's what's so exciting about the samples that we studied — they have sort of the perfect chemistry to be representative of Mercury,' he said. Most of what is known about Mercury's surface and composition comes from NASA's MESSENGER probe, which assessed the makeup of the planet's crust from orbit. Both meteorites from the study, which Rider-Stokes analyzed with several instruments including an electron microscope, contain olivine and pyroxene, two iron-poor minerals confirmed by MESSENGER to be present on Mercury. The new analysis also revealed a complete lack of iron in the space rock samples, which is consistent with scientists' assumptions about the planet's surface. However, the meteorites contained only trace amounts of plagioclase, a mineral believed to dominate Mercury's surface. The biggest point of uncertainty, though, is still the meteorites' age. 'They are about 4.5 billion years old,' Rider-Stokes said, 'and most of Mercury's surface is only about 4 billion years old, so there's a 500 million-year difference.' However, he said he thinks this discrepancy is not sufficient to rule out a Mercurian origin, due to the limited reliability of MESSENGER's data, which has been also used to estimate the age of Mercury's surface layer. 'These estimates are based on impact cratering models and not absolute age dating, and therefore may not be entirely accurate,' Rider-Stokes said. 'It doesn't mean that these samples aren't good analogs for regional areas on the surface of Mercury, or the early Mercurian crust that is not visible on the modern surface of Mercury.' With more modern instruments now available, BepiColombo, the European Space Agency probe that will start studying Mercury in early 2027, may be able to answer long-standing questions about the planet, such as where it formed and whether it has any water. Having material confirmed to have come from other planetary bodies helps astronomers understand the nature of early solar system's building blocks, Rider-Stokes said, and identifying fragments of Mercury would be especially crucial since a mission to gather samples from the planet closest to the sun and bring them back would be extremely challenging and expensive. Sean Solomon, principal investigator for NASA's MESSENGER mission to Mercury, said in an email that he believes the two meteorites described in the recent paper likely did not originate from Mercury. Solomon, an adjunct senior research scientist at Columbia University in New York City, was not involved with the study. The primary reason Solomon cited for his doubts is that the meteorites formed much earlier than the best estimates for the ages of rocks now on Mercury's surface. But he said he thinks the samples still hold research value. 'Nonetheless, the two meteorites share many geochemical characteristics with Mercury surface materials, including little to no iron … and the presence of sulfur-rich minerals,' he added. 'These chemical traits have been interpreted to indicate that Mercury formed from precursor materials much more chemically reduced than those that formed Earth and the other inner planets. It may be that remnants of Mercury precursor materials still remain among meteorite parent bodies somewhere in the inner solar system, so the possibility that these two meteorites sample such materials warrants additional study.' Solomon also noted that it was difficult to persuade the planetary science community that there were samples from Mars in meteorite collections, and that it took precise matching of their chemistry with data about the surface of Mars taken by the Viking probes to convince researchers to take a closer look. Lunar meteorites were also not broadly acknowledged to be in meteorite collections until after the existence of Martian meteorites had been demonstrated in the 1980s, he added, even though the Apollo and Luna missions had returned abundant samples of lunar materials more than a decade earlier. Once samples are confirmed to be from a planetary body, Solomon said, they can provide crucial information not available from remote sensing by an orbiting spacecraft on the timing of key geological processes, the history of internal melting of the body, and clues to planet formation and early solar system processes. Rider-Stokes plans to continue the discussion around these meteorites at the annual meeting of the Meteoritical Society, which takes place in Perth this week. 'I'm going to discuss my findings with other academics across the world,' he said. 'At the moment, we can't definitively prove that these aren't from Mercury, so until that can be done, I think these samples will remain a major topic of debate across the planetary science community.'

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store