logo
These two nations join hands up to build a nuclear power plant on the moon; not US, UK, France, India, Japan, they are...

These two nations join hands up to build a nuclear power plant on the moon; not US, UK, France, India, Japan, they are...

India.com14-05-2025

(Representational Image/AI-generated)
In a major development that could once again trigger a new space race between major world powers, China and Russia have teamed up to build a nuclear power plant on the Moon. According to reports, the revolutionary project, which is expected to be completed by 2036, will power International Lunar Research Station (ILRS), another major undertaking led by the two allies.
The announcement comes at a time when US space agency NASA has called for cancellation of its planned orbital station on the Moon in its 2026 budget proposal, while its Artemis program– which aims to send American astronauts back to the moon after nearly five decades– is facing challenges due to delays and budget cuts. Sino-Russian lunar nuclear power plant to power ILRS
As per reports, China and Russia recently signed a Memorandum of Understanding (MoU) to establish a permanent human base on the lunar south pole, and build a nuclear power plant that will power the base and the ILRS– a revolutionary project designed for scientific research and long-term unmanned operations, including the possibility of future human presence on the Moon.
Yury Borisov, General Director of Russian space agency Roscosmos, said the nuclear plant will be built 'without human presence', hinting at advanced robots carrying out the construction on the lunar surface. Borisov did not provide any details on the technology required for such an endeavor but said the pre-requisites are 'almost ready'.
As per details, the construction of the lunar nuclear plant is scheduled to begin between 2030 and 2035, and expected to completed by 2036. The foundation stone for the ILRS will be laid in 2028 with China's Chang'e-8 mission, its first manned mission to the Moon. What is the ILRS mission, and why its a gamechanger?
The International Lunar Research Station (ILRS), is an ambitious project jointly led by China and Russia, which aims to establish a permanent human-controlled base on the moon's south pole for conducting scientific research. First announced by Moscow and Beijing in June 2021, it now includes as a many as 17 other countries, including Pakistan, Egypt, Venezuela, Thailand and South Africa.
The ILRS will be constructed using materials shipped via five super heavy-lift rocket launches from 2030 to 2035, and the station is planned to be expanded by 2050 to include an orbital space station, two nodes on the moon's equator and its far side.
The ambitious lunar research station will be powered by solar, radioisotope and nuclear generators, and will feature high-speed communication networks on the Moon-Earth and lunar surface, lunar vehicles and manned rovers.
The ILRS aims to provide a major technological footing for humans on the moon for research, long-term unmanned operations, and also aims to serve as a base for manned missions to Mars. China's rapidly expanding space program
Notably, China has rapidly developed its space program over the las decade, landing its first lunar rover in the 2013 Chang'e-3 mission. Since then, Beijing has sent several rovers to the moon and Mars, collecting samples from the near and far sides of the moon and mapping the lunar surface.
China's Chang'e-8 mission aims to land Chinese astronauts on the moon by 2030, as Beijing looks to cement its place as the undisputed global leader in space research and missions, replacing its rival, the United States.

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

James Webb Telescope Detects Frozen Water In Young Star System For The First Time
James Webb Telescope Detects Frozen Water In Young Star System For The First Time

NDTV

time6 hours ago

  • NDTV

James Webb Telescope Detects Frozen Water In Young Star System For The First Time

For decades, scientists have been fascinated by the mystery of how life originated on Earth and where our water came from. One long-standing theory suggests that water was present around our star, particularly in the outer reaches of the solar system in its early days. Recently, NASA researchers using the James Webb Space Telescope made a groundbreaking discovery that lends credence to this theory. They've found water ice in the debris disk that orbits HD 181327, a Sun-like star 155 light-years from Earth. According to Science Alert, the star system, just 23 million years old, is significantly younger than our 4.6-billion-year-old Solar System. This youthful system is still in its formative stages, with a protoplanetary disk surrounding the star that hasn't yet coalesced into planets. Chen Xie, an assistant research scientist at JHU and the study's lead author, said in a recent NASA press release, "Webb unambiguously detected not just water ice, but crystalline water ice, which is also found in locations like Saturn's rings and icy bodies in our Solar System's Kuiper Belt. The presence of water ice helps facilitate planet formation. Icy materials may also ultimately be 'delivered' to terrestrial planets that may form over a couple of hundred million years in systems like this." Using the James Webb Space Telescope's near-infrared spectrograph (NIRSpec), researchers detected water ice in the debris disk surrounding HD 181327. The water ice was predominantly found in the outer debris ring, making up over 20% of its mass, in the form of "dirty snowballs", a combination of ice and fine dust particles. The amount of water ice decreased closer to the star, with only 8% of the material consisting of ice halfway in from the disk's edge, and virtually none near the centre. This decrease is likely due to vaporisation from the star's ultraviolet radiation or potentially locked up in rocks and planetesimals. "When I was a graduate student 25 years ago, my advisor told me there should be ice in debris disks, but before Webb, we didn't have instruments sensitive enough to make these observations. What's most striking is that this data looks similar to the telescope's other recent observations of Kuiper Belt objects in our own Solar System," said Christine Chen, an associate astronomer at the Space Telescope Science Institute (STScI) and co-author on the study. Analysing these actively forming planetary systems will enhance our understanding of planet formation models and provide fresh insights into the origins of our own Solar System.

US scientists warn that trump's cuts will set off a brain drain
US scientists warn that trump's cuts will set off a brain drain

Business Standard

time6 hours ago

  • Business Standard

US scientists warn that trump's cuts will set off a brain drain

Ardem Patapoutian's story is not just the American dream, it is the dream of American science. He arrived in Los Angeles in 1986 at age 18 after fleeing war-torn Lebanon. He spent a year writing for an Armenian newspaper and delivering Domino's at night to become eligible for the University of California, where he earned his undergraduate degree and a postdoctoral fellowship in neuroscience. He started a lab at Scripps Research in San Diego with a grant from the National Institutes of Health, discovered the way humans sense touch, and in 2021 won the Nobel Prize. But with the Trump administration slashing spending on science, Dr. Patapoutian's federal grant to develop new approaches to treating pain has been frozen. In late February, he posted on Bluesky that such cuts would damage biomedical research and prompt an exodus of talent from the United States. Within hours, he had an email from China, offering to move his lab to 'any city, any university I want,' he said, with a guarantee of funding for the next 20 years. Dr. Patapoutian declined, because he loves his adopted country. Many scientists just setting out on their careers, however, fear there is no other option but to leave. Scientific leaders say that's risking the way American science has been done for years, and the pre-eminence of the United States in their fields. China and Europe are on hiring sprees. An analysis by the journal Nature captured the reversal: Applications from China and Europe for graduate student or postdoctoral positions in the United States have dropped sharply or dried up entirely since President Trump took office. The number of postdocs and graduate students in the United States applying for jobs abroad has spiked. A university in France that created new positions for scientists with canceled federal grants capped applications after overwhelming interest. A scientific institute in Portugal said job inquiries from junior faculty members in the United States are up tenfold over the last two months. 'We are embarking on a major experiment in restructuring the innovative engine in America, and China is the control,' said Marcia McNutt, a geophysicist and the president of the National Academy of Sciences, which was established by President Abraham Lincoln to advise the government on science policy. 'China is not going to cut its research budget in half.' Since the 1950s, when the federal government expanded the National Institutes of Health and created the National Science Foundation as public-private research partnerships, the United States has become the international mecca for science. It was the uniquely American system that President Franklin D. Roosevelt's science adviser, Vannevar Bush, envisioned in his landmark report, 'Science, The Endless Frontier': Federal money enabled scientific discoveries that made American research institutions the envy of the world, and they in turn fueled the rise of the United States as the leader in technology and biotechnology. As that system attracted international talent, it came to depend on the aspiring scientists who come to the United States to work in university labs at low wages for the privilege of proximity to the world's best researchers. They often stay: In the American defense industry and fields like engineering and computer and life sciences, at least half the workers with doctorates are foreign-born. Now, American science finds itself fighting on several fronts as the Trump administration seeks to cut budgets and seal borders, to punish universities for their liberalism and federal health agencies for their responses to Covid. Federal science budgets have been slashed. Stricter immigration policies have spread fear among international scientists working in the United States, and those who had hoped to. Graduate and postdoctoral students have had their visas canceled, or worry they will. The administration cut off funding for international students at Harvard — a judge blocked the move, but other universities worry about being next. Secretary of State Marco Rubio pledged to 'aggressively revoke' the visas of Chinese students in what he called 'critical fields,' which almost certainly includes science, where labs often have more Chinese than American-born graduate students and postdocs. President Trump has worried about the nation losing its scientific edge to 'rivals abroad,' as he wrote in a letter in March to his science adviser, Michael Kratsios. He urged Mr. Kratsios to continue Vannevar Bush's vision, 'recapturing the urgency which propelled us so far in the last century.' Yet Mr. Kratsios argues that philanthropies and industry should pick up more of the cost, and that too much federal science spending goes to bureaucracy. 'Spending more money on the wrong things is far worse than spending less money on the right things,' he said in a speech at the National Academy in May. But even at Johns Hopkins, which has benefited from the philanthropy of former New York Mayor Michael R. Bloomberg, those dollars can't make up the shortfall. Industry doesn't typically fund basic research, and it costs more to do research in industry in part because companies, unlike university labs, have to pay competitive wages. 'It's not just the international students, the whole system is on hold because the uncertainty does not allow you to plan,' Dr. Patapoutian said. 'With all these grants frozen or cut, it creates this massive chaos.' Just under half of the graduate students and postdocs in his lab hail from other countries. Now he is seeing less interest from abroad, but like many other lab heads he is not hiring new postdocs anyway: 'Everybody's kind of bolted down making sure we have the funds to keep the people we have.' In the first half of the 20th century, American scientists joined European universities to make fundamental discoveries: the structure of molecules (J. Robert Oppenheimer), the structure of DNA (James Watson). The rise of fascism in Europe drove many Jewish scientists to the United States. After World War II, 'we brought the rocket scientists here,' said Dr. McNutt. 'That's what got us to the moon.' While the logistics and expense of moving entire labs is likely to daunt more established researchers from moving, for postdocs and others just starting their labs, other countries offer the promise of greater stability. 'They are going to be able to recruit the best and brightest, proven people,' Dr. McNutt said. 'They are going to give them labs. They're going to give them equipment and funds, no questions asked.' At Johns Hopkins, which has long received more N.I.H. funding than any other university, Richard Huganir, the chairman of neuroscience, said he is 'terrified' of being unable to enroll international students. His department has 36 labs with 100 graduate students and postdocs, about 30 percent are international. 'For us, it would be losing 30 percent of our work force,' he said. 'They are integral to the whole fabric of American science, and losing that population would be devastating.' Graduate students and postdocs are going home to China and Korea for jobs, he said. Beyond losing talent, Dr. Huganir worries about the increasing isolation of American science. He canceled plans to host an international meeting at Hopkins because foreign scientists did not want to come to the United States; organizers considered moving it to Oxford, in England, but realized international students in the United States would not go because they fear not being allowed back in. Robert F. Kennedy Jr., the nation's top federal health official, this week said he wanted to bar scientists at the N.I.H. and other federal agencies from publishing in leading scientific journals, which he called 'corrupt.' Mathias Unberath, a computer scientist who studies computer-assisted medicine, came to Hopkins from Germany eight years ago. He has 13 doctoral students and two postdocs, all but five from abroad. 'My whole team, including those who were eager to apply for more permanent positions in the U.S., have no more interest,' he said. Those looking for jobs are applying in Europe, 'including some of my superstars,' he said. One American citizen, the recipient of a prestigious Siebel scholarship and an award for best paper, has taken a postdoc in Germany. Dr. Unberath himself was in the hospital with his wife, who had just given birth to their second son, when the first Trump administration suspended H-1B visas — Dr. Unberath had one. Now, he said, even if his students can get visas, they see the cuts to the N.S.F. and N.I.H. and worry they will not be able to get the early career grants they need to earn tenure. 'And if you don't make tenure,' he said, 'well, then what?' Daphne Koller came from Israel to do her Ph.D. in computer science at Stanford, became a professor there and was awarded a MacArthur Fellowship before founding two tech companies, Coursera, which puts university courses online, and Insitro, which uses artificial intelligence to drive drug discovery. Most of the first employees at both companies, she said, were hired right out of universities, and most were foreign-born. 'I would like nothing better than for the U.S. education system to really have the same emphasis on rigor and science and STEM so that we can train great scientists and engineers here,' Dr. Koller said. 'That would be incredible, but it doesn't happen magically. Even if that were ultimately the case, it's wonderful for a country to be in the unique position where it is the beacon, the magnet for the best and brightest from all over the world.' No institution has been more affected than Harvard, as the administration has made it an example of what it sees as the woke excesses of higher education. Rudolf Pisa, in a cell biology lab there, lost the N.I.H. grant that helps postdoctoral researchers transition to running their own labs. He came from the Czech Republic to do his Ph.D. at Rockefeller University in New York because he believed the American approach to science was 'brave.' His wife, a neuroscientist at Boston University, is American, but fears it is only a matter of time before her grant is canceled, too. They are looking for jobs in Europe. 'Two months ago I would not have thought of any of this,' Dr. Pisa said. He had considered himself a good investment for the United States. His work at Rockefeller helped lead to a patent and then a company to design cancer drugs that would be less likely to develop resistance over time. 'We created jobs,' he said. 'There's more out of it than just the papers.' The head of Dr. Pisa's lab, Tom Rapoport, said five of his students had their visas revoked before a judge temporarily restored them. He also lost the federal grant that funds his lab — despite a perfect score from N.I.H reviewers. He may have to reduce his lab from 14 people to eight, only one of them is American. Dr. Rapoport knows well how political turbulence affects science. His parents fled Nazism in Germany and Austria to train and work in the United States: His mother was a pediatrician, his father a biochemist who discovered how to prolong the shelf life of blood, which the U.S. military used to save countless service members. They left after being blacklisted as members of the Communist Party, ending up in East Germany. Dr. Rapoport was a professor there until the fall of the Berlin Wall; after, he had trouble getting a position, he said, because universities were suspicious of those from the East. He joined Harvard in 1995 because he admired the innovation and rigor of American science. 'This is scientific heaven,' he said. 'Or it used to be.' He worries that Americans don't appreciate how the system has worked for so long. 'Many people look at us as just parasites,' he said. 'All the medicines that people take, they were all developed in the U.S. There's essentially nothing developed by anyone else. We are on the top of the whole thing, and we're really risking it all.'

Asteroid bigger than the Empire State Building to fly by Earth this week: What if it strikes?
Asteroid bigger than the Empire State Building to fly by Earth this week: What if it strikes?

Economic Times

time7 hours ago

  • Economic Times

Asteroid bigger than the Empire State Building to fly by Earth this week: What if it strikes?

ESA Labels It 'Infrequent' Due to Size and Distance Origins and Discovery of Asteroid 2008 DG5 Live Events Potential Consequences of a Hypothetical Impact Recent Close Call: The Case of Asteroid 2024 YR4 FAQs What is asteroid 2008 DG5? When will asteroid 2008 DG5 pass by Earth? (You can now subscribe to our (You can now subscribe to our Economic Times WhatsApp channel In a rare astronomical occurrence, an asteroid larger than the Golden Gate Bridge or the Empire State building is expected to make a safe pass by Earth on Thursday, June 5, 2025. The asteroid, formally designated 424482 (2008 DG5), is estimated to measure between 310 to 690 metres (1,017 to 2,264 feet), placing it among the largest 3% of known asteroids, according to data from its massive size, the asteroid poses no threat to Earth. The object will pass at a distance of 2.17 million miles (3.49 million kilometres)—approximately nine times farther than the Moon, which orbits Earth at an average distance of 238,855 miles (384,400 km), as mentioned in a report by the flyby may seem distant in terrestrial terms, the European Space Agency (ESA) has termed the event 'infrequent' owing to the asteroid's scale and relatively close approach. According to international standards, any object over 492 feet (150 metres) in diameter passing within 4.6 million miles (7.4 million kilometres) is categorized as a 'potentially hazardous object.' Thus, 2008 DG5 falls within that classification, despite no danger of 2008 DG5 belongs to the Apollo group of asteroids, known for orbits that intersect Earth's path around the Sun. The object completes a full solar orbit roughly every 514 Earth days. It was first spotted in 2008 by astronomers from the Catalina Sky Survey, an Arizona-based observatory operating under NASA's Near-Earth Object Observation next anticipated close approach of this asteroid will not occur until 2032, marking this year's flyby as a rare chance for researchers and skywatchers to monitor such a sizable near-Earth object, as per the Forbes 2008 DG5 will pass harmlessly, astronomers often talk about the potential consequences of similar objects entering Earth's atm osphere. An asteroid of this size could cause widespread regional devastation, generating shockwaves, fires, or tsunamis depending on the impact draw a comparison, NASA cites the Tunguska event of 1908, caused by an asteroid only 130 feet (40 metres) wide, which devastated over 2,000 square kilometres of Siberian forest. At the extreme end, the Chicxulub impact, believed to have wiped out the dinosaurs, involved an asteroid estimated at 10 to 15 kilometres in this year, a separate asteroid known as 2024 YR4 made headlines after early predictions suggested a possible impact on December 22, 2032. The object, which is approximately 130 to 300 feet in diameter—about as tall as the Statue of Liberty—initially presented a 3.1% chance of collision, the highest ever recorded for an asteroid of that Asteroid Terrestrial-impact Last Alert System (ATLAS) in Chile first detected 2024 YR4 on December 27, 2024, triggering widespread concern. However, after further analysis, NASA's Center for Near-Earth Object Studies announced on February 24 that the probability of impact had dropped to near zero. Asteroid 2008 DG5 is a massive near-Earth object belonging to the Apollo group of asteroids, which are known for their Earth-crossing orbits. It measures between 310 to 690 meters (1,017 to 2,264 feet), placing it among the top 3% of the largest known asteroid is expected to make its closest approach to Earth on Thursday, June 5, 2025.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store