logo
Humans adapted to diverse habitats before trekking out of Africa

Humans adapted to diverse habitats before trekking out of Africa

Yahoo5 hours ago

By Will Dunham
(Reuters) -Small bands of Homo sapiens made a few failed forays leaving our home continent before the species finally managed to launch a major dispersal out of Africa roughly 50,000 years ago, going first into Europe and Asia and eventually the rest of the world.
So why was this migration successful after the prior ones were not? New research is offering insight. It documents how human hunter-gatherers in Africa began about 70,000 years ago to embrace a greater diversity of habitats such as thick forests and arid deserts, acquiring an adaptability useful for tackling the wide range of conditions awaiting beyond the continent.
"Why the dispersal 50,000 years ago was successful is a big question in human origins research. Our results suggest that one part of the reason is that humans had developed the ecological flexibility to survive in challenging habitats," said Loyola University Chicago archeologist Emily Hallett, co-leader of the study published in the journal Nature.
Looking at an array of archeological sites in Africa, the study detailed how human populations expanded their range into the forests of Central and West Africa and the deserts of North Africa in the roughly 20,000 years preceding this dispersal.
Some examples of archeological sites dating to this time that illustrate the expansion of human niches to harsh deserts include locales in Libya and Namibia, and examples of expansion to forested habitats include locales in Malawi and South Africa.
Homo sapiens arose roughly 300,000 years ago, inhabiting grasslands, savannahs and various other African ecosystems.
"Starting from about 70,000 years ago, we see that they suddenly start to intensify this exploitation of diverse habitats and also expand into new types of habitat in a way we don't see before. They exploit more types of woodland, more types of closed canopy forests, more types of deserts, highlands and grasslands," said archeologist and study co-leader Eleanor Scerri of the Max Planck Institute of Geoanthropology in Germany.
"An Ice Age was coming, which means drier conditions in parts of Africa. It seems possible that humans responded to this squeeze by learning how to adapt to new niches," Scerri added.
The increased ecological flexibility of the species appears to have reflected cultural and social advances such as passing knowledge from one generation to the next and engaging in cooperative behavior, the researchers said.
"This must have entailed profound changes in their interaction with the natural environment, as it allowed them to occupy not only new environments in Africa, but entirely new conditions in Eurasia as well," said evolutionary biologist and study co-leader Michela Leonardi of the Natural History Museum in London.
"Another way to phrase this is that the ability to live in a variety of environments in Africa is not directly the adaptation that allowed a successful out of Africa, but rather a sign that humans by that point were the ultimate generalist, able to tackle environments that went from deep forest to dry deserts," said University of Cambridge evolutionary ecologist and study co-leader Andrea Manica.
"This flexibility is the key trait that allowed them, later on, to conquer novel challenges, all the way to the coldest tundras in Siberia."
Trekking out of Africa, Homo sapiens encountered not only new environments and unfamiliar animals and plants, but also other human species, including the Neanderthals and Denisovans. The ecological flexibility learned in Africa may have provided an edge when Homo sapiens encountered these other humans, both of whom disappeared relatively soon thereafter, the researchers said.
Genetic evidence indicates that today's people outside of Africa can trace their ancestry to the population of humans, numbering perhaps only in the thousands, who engaged in that pioneering migration out of Africa approximately 50,000 years ago.
"I think that adaptability and innovation are hallmarks of our species, and that they allowed us to succeed in every environment we encountered," Hallett said. "At the same time, we are almost too good at adapting to different places, to the detriment of most other species on Earth."

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Early humans adapted to extreme habitats. Researchers say it set the stage for global migration
Early humans adapted to extreme habitats. Researchers say it set the stage for global migration

Yahoo

time2 hours ago

  • Yahoo

Early humans adapted to extreme habitats. Researchers say it set the stage for global migration

WASHINGTON (AP) — Humans are the only animal that lives in virtually every possible environment, from rainforests to deserts to tundra. This adaptability is a skill that long predates the modern age. According to a new study published Wednesday in Nature, ancient Homo sapiens developed the flexibility to survive by finding food and other resources in a wide variety of difficult habitats before they dispersed from Africa about 50,000 years ago. 'Our superpower is that we are ecosystem generalists,' said Eleanor Scerri, an evolutionary archaeologist at the Max Planck Institute of Geoanthropology in Jena, Germany. Our species first evolved in Africa around 300,000 years ago. While prior fossil finds show some groups made early forays outside the continent, lasting human settlements in other parts of the world didn't happen until a series of migrations around 50,000 years ago. 'What was different about the circumstance of the migrations that succeeded — why were humans ready this time?' said study co-author Emily Hallett, an archaeologist at Loyola University Chicago. Earlier theories held that Stone Age humans might have made a single important technological advance or developed a new way of sharing information, but researchers haven't found evidence to back that up. This study took a different approach by looking at the trait of flexibility itself. The scientists assembled a database of archaeological sites showing human presence across Africa from 120,000 to 14,000 years ago. For each site, researchers modeled what the local climate would have been like during the time periods that ancient humans lived there. 'There was a really sharp change in the range of habitats that humans were using starting around 70,000 years ago,' Hallet said. 'We saw a really clear signal that humans were living in more challenging and more extreme environments.' While humans had long survived in savanna and forests, they shifted into everything from from dense rainforests to arid deserts in the period leading up to 50,000 years ago, developing what Hallet called an "ecological flexibility that let them succeed.' While this leap in abilities is impressive, it's important not to assume that only Homo sapiens did it, said University of Bordeaux archaeologist William Banks, who was not involved in the research. Other groups of early human ancestors also left Africa and established long-term settlements elsewhere, including those that evolved into Europe's Neanderthals, he said. The new research helps explain why humans were ready to expand across the world way back when, he said, but it doesn't answer the lasting question of why only our species remains today. ___ The Associated Press Health and Science Department receives support from the Howard Hughes Medical Institute's Science and Educational Media Group and the Robert Wood Johnson Foundation. The AP is solely responsible for all content.

Tiny Moth Seen Navigating by The Stars in Scientific First
Tiny Moth Seen Navigating by The Stars in Scientific First

Yahoo

time5 hours ago

  • Yahoo

Tiny Moth Seen Navigating by The Stars in Scientific First

Every year, the bogong moth makes an epic journey across Australia. When the warmer days of spring spread across the country, billions of bogong moths (Agrotis infusa) up stakes and fly, unerringly and only at night, up to 1,000 kilometers (620 miles) to a place they have never been before: the cool caves high in the Australian Alps. There, they will enter a state of dormancy – called aestivation – to wait out the hot summer before dispersing again to breed in autumn, creating the next generation of moths to find their way to the summer caves. Exactly how they accomplish this feat has long fascinated scientists: the lifespan of the bogong is just one year, so the route must be hardwired in somehow. Now, a piece of the puzzle has been found. They follow the stars. "In our study," neuroscientist Andrea Adden of the Francis Crick Institute in the UK told ScienceAlert, "we show that bogong moths can use the starry sky (without any additional cues) to fly in that migratory direction, which tells us that they can use it to navigate: fly in the correct direction stably over many kilometers to a specific migratory goal." The flight of the bogong moths is an amazing thing to experience. They fly for hours through the night, stopping to rest during the day in any crannies and crevices they can access. It's not unheard of for a town to be blanketed with napping bogongs on their way to the Australian Alps; the entire migration can take many nights. To navigate long distances, animals rely on a variety of signs and stimuli. Some may use special adaptations to sense the magnetic field that encompasses the planet. Others may use visual cues, such as following the Moon, the Sun, or landmarks. Previous research led by zoologist David Dreyer and senior author Eric Warrant of Lund University showed that bogong moths use a combination of both magnetoreception and visual cues. It now appears magnetism might not play as big a role as thought. To build on these earlier findings, Dreyer, Adden, Warrant and their colleagues have now conducted a series of experiments to find out what the visual cues in question might be. Using a Helmholtz coil system, which nullifies Earth's magnetic field, they projected different starry vistas onto the vacuum chamber, and observed that the moths still flew in a seasonally appropriate direction. They also showed moths different images of the night sky while Adden recorded their brain activity using single-cell electrophysiology. "A very thin glass electrode (thinner than a human hair) is inserted into specific brain regions of a moth to penetrate the cell-membrane of certain navigation relevant neurons. The signal or electric activity of such a neuron is now amplified and recorded for subsequent analysis," Dreyer explained. "While the cell was impaled, the moth was stimulated with rotations of a projected image of the starry sky and various controls. It turns out that about 28 of the recorded neurons responded to changes of the orientation of the starry sky, not the control image (image in which a randomized arrangement of the starry sky was presented)." That rotation is important, and to understand why, we have to consider another animal that uses the stars as a guide: the dung beetle. Previous research has shown that dung beetles use a mental stellar map to return home after rolling a ball away from the dung heap. But their journey is quite different from the one bogong moths undertake. "Dung beetles don't care where they end up with their dung ball, they roll their ball in a random direction away from competitors on the dung heap," Adden explained. "Also, dung beetles only need to get far enough from the dung heap to eat their meal in peace, a distance they travel in about 10 minutes." The journey of a bogong moth is much longer, taking up to several weeks, for hours at a time, with much higher stakes: if the moth doesn't make it to that cave in time for summer, it's not going to survive into the next breeding season. "It needs to compensate for crosswinds and most importantly, if the bogongs predominantly use their sky compass, they would need to compensate for the celestial rotation over the course of a respective night," Dreyer said. "This means that if bogong moths fly at an angle relative to a particular cue in the sky (for example, the Carina Nebula or the long axis of the Milky Way), this angle would need to change accordingly through steering to keep a straight line of flight." We don't know exactly what stellar properties the moths are basing their navigation on, but the team's research clearly shows that, in the absence of a magnetic field, and under a starry sky, they are still able to find their way. "During our research, we've had two main questions. Firstly, how does the Bogong moth know the direction it needs to travel? And secondly, how does it know when to stop?" Warrant told ScienceAlert. "We are starting to work on the second question now, to determine the sensory cues that might be associated with the destination – this is our next line of research. But another obvious area of future research is to try and understand how magnetic and stellar information is integrated in the brain." Celestial navigation is pretty common in the animal kingdom. Humans do it, some birds can do it, and some seals and frogs. Other moths and butterflies use the Sun to navigate. So it's unlikely that the bogong moth is the only insect that can navigate at night in this way. That, however, does not make it any less of a wonder. "That a tiny insect with a wingspan of 5 cm and a brain the tenth of the volume of a grain of rice manages to fly about 1000 km at nighttime, potentially just by using the stars to steer the course still amazes me," Dreyer said "Imagine someone gives you the task to walk such a distance without food or shelter, exclusively at nighttime without GPS or a compass. If one makes just a small, let's say five-degree, mistake while determining the walking direction on the first night, that means you are already 90 kilometers off target after 1000 kilometers, and if you have to walk on multiple nights, there is plenty of time for steering mistakes. The story doesn't get old." The research has been published in Nature. First Signs of a 'Ghost' Plume Reshaping Earth Detected Beneath Oman Great White Sharks Were Scared From Their Habitat by Just 2 Predators Solid Rock Caught Flowing 1,700 Miles Beneath Surface in Experimental First

Humans adapted to diverse habitats before trekking out of Africa
Humans adapted to diverse habitats before trekking out of Africa

Yahoo

time5 hours ago

  • Yahoo

Humans adapted to diverse habitats before trekking out of Africa

By Will Dunham (Reuters) -Small bands of Homo sapiens made a few failed forays leaving our home continent before the species finally managed to launch a major dispersal out of Africa roughly 50,000 years ago, going first into Europe and Asia and eventually the rest of the world. So why was this migration successful after the prior ones were not? New research is offering insight. It documents how human hunter-gatherers in Africa began about 70,000 years ago to embrace a greater diversity of habitats such as thick forests and arid deserts, acquiring an adaptability useful for tackling the wide range of conditions awaiting beyond the continent. "Why the dispersal 50,000 years ago was successful is a big question in human origins research. Our results suggest that one part of the reason is that humans had developed the ecological flexibility to survive in challenging habitats," said Loyola University Chicago archeologist Emily Hallett, co-leader of the study published in the journal Nature. Looking at an array of archeological sites in Africa, the study detailed how human populations expanded their range into the forests of Central and West Africa and the deserts of North Africa in the roughly 20,000 years preceding this dispersal. Some examples of archeological sites dating to this time that illustrate the expansion of human niches to harsh deserts include locales in Libya and Namibia, and examples of expansion to forested habitats include locales in Malawi and South Africa. Homo sapiens arose roughly 300,000 years ago, inhabiting grasslands, savannahs and various other African ecosystems. "Starting from about 70,000 years ago, we see that they suddenly start to intensify this exploitation of diverse habitats and also expand into new types of habitat in a way we don't see before. They exploit more types of woodland, more types of closed canopy forests, more types of deserts, highlands and grasslands," said archeologist and study co-leader Eleanor Scerri of the Max Planck Institute of Geoanthropology in Germany. "An Ice Age was coming, which means drier conditions in parts of Africa. It seems possible that humans responded to this squeeze by learning how to adapt to new niches," Scerri added. The increased ecological flexibility of the species appears to have reflected cultural and social advances such as passing knowledge from one generation to the next and engaging in cooperative behavior, the researchers said. "This must have entailed profound changes in their interaction with the natural environment, as it allowed them to occupy not only new environments in Africa, but entirely new conditions in Eurasia as well," said evolutionary biologist and study co-leader Michela Leonardi of the Natural History Museum in London. "Another way to phrase this is that the ability to live in a variety of environments in Africa is not directly the adaptation that allowed a successful out of Africa, but rather a sign that humans by that point were the ultimate generalist, able to tackle environments that went from deep forest to dry deserts," said University of Cambridge evolutionary ecologist and study co-leader Andrea Manica. "This flexibility is the key trait that allowed them, later on, to conquer novel challenges, all the way to the coldest tundras in Siberia." Trekking out of Africa, Homo sapiens encountered not only new environments and unfamiliar animals and plants, but also other human species, including the Neanderthals and Denisovans. The ecological flexibility learned in Africa may have provided an edge when Homo sapiens encountered these other humans, both of whom disappeared relatively soon thereafter, the researchers said. Genetic evidence indicates that today's people outside of Africa can trace their ancestry to the population of humans, numbering perhaps only in the thousands, who engaged in that pioneering migration out of Africa approximately 50,000 years ago. "I think that adaptability and innovation are hallmarks of our species, and that they allowed us to succeed in every environment we encountered," Hallett said. "At the same time, we are almost too good at adapting to different places, to the detriment of most other species on Earth."

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store