See a razor-thin crescent moon join Jupiter and Venus in the predawn sky on Aug. 20
Look to the east in the hours preceding sunrise on Aug. 20 to see a thin crescent moon rendezvous with Venus and Jupiter to form a celestial triangle in the predawn sky.
TOP TELESCOPE PICK
Want to see the planets of the solar system for yourself? The Celestron NexStar 8SE is ideal for beginners wanting quality, reliable and quick views of celestial objects. For a more in-depth look at our Celestron NexStar 8SE review.
The 9%-lit waning crescent moon can be found roughly 15 degrees above the eastern horizon an hour and a half before sunrise on Aug. 20, embedded in the twinkling stars of the constellation Gemini.
Venus will be visible as a bright 'morning star' shining approximately 5 degrees to the lower right of the lunar disk, while Jupiter will sit less than 10 degrees to the upper right of the moon, forming the highest point of the cosmic triangle. Remember, the width of your fist held at arm's length accounts for roughly 10 degrees of night sky.
The bright stars Castor and Pollux will be positioned to the left of the moon in the early morning hours of Aug. 19. Mercury, meanwhile, will be visible close to the horizon, but will swiftly become lost in the glare of the sun, which rises at 6:11 a.m. ET (1011 GMT) for viewers in New York.
Viewing the cosmic trio with a 6-inch telescope will reveal the dark oval of the Grimaldi Basin impact site scarring the lunar surface, along with cloud bands on the surface of Jupiter, and the moon-like phases of Venus, under good atmospheric conditions.
The coming nights will see the wafer-thin lunar crescent sweep past Venus to join Mercury and the Beehive open star cluster in the constellation Cancer, the crab, ahead of its new moon phase on Aug. 23.
Stargazers looking for new equipment with which to explore the night sky should check out our roundups of the best telescopes and binoculars available in 2025. Photographers should also read up on our roundups of the best lenses and cameras for astrophotography.
Editor's Note: If you capture a picture of the crescent moon with Jupiter and Venus and want to share it with Space.com's readers, then please send your photo(s), comments, name and location to spacephotos@space.com.

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
9 hours ago
- Yahoo
Gene that differs between humans and Neanderthals could shed light on the species' disappearance, mouse study suggests
When you buy through links on our articles, Future and its syndication partners may earn a commission. A protein that helps synthesize DNA is different in modern humans than it is in Neanderthals and Denisovans — our closest extinct relatives — and new experiments in mice genetically modified to express the modern human version hint that this may have made us behave differently. That discovery, in turn, could shed light on why Neanderthals and Denisovans vanished, researchers propose in a new study. But the significance of the findings for humans is still unclear. "It's too early to translate these findings directly to humans, as the neural circuits of mice are vastly different," study lead author, Xiangchun Ju, a postdoctoral researcher at the Okinawa Institute of Science and Technology in Japan, said in a statement. However, this work hints that the variant seen in modern humans "might have given us some evolutionary advantage in particular tasks relative to ancestral humans," such as competing for scarce resources. Key protein Previous research found that modern humans diverged from their closest evolutionary relatives, Neanderthals and Denisovans, about 600,000 years ago. It's not clear why modern humans survived while our closest relatives died off. To search for potential genetic clues to solve this mystery, the researchers analyzed the enzyme ADSL (adenylosuccinate lyase). This protein helps synthesize purine, one of the fundamental building blocks of DNA and other vital molecules. Related: A braided stream, not a family tree: How new evidence upends our understanding of how humans evolved "There are a small number of enzymes that were affected by evolutionary changes in the ancestors of modern humans. ADSL is one of them," study co-author Svante Pääbo, Nobel laureate, leader of the human evolutionary genomics unit at the Okinawa Institute of Science and Technology in Japan, and director of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, said in a statement. ADSL is made up of a chain of 484 amino acids. The version of this enzyme found in virtually all modern humans differs from that seen in both Neanderthals and Denisovans by just one amino acid — the 429th amino acid in ADSL is valine in modern humans but alanine in our extinct relatives. The scientists noted the ADSL mutation is seen in modern humans and not our closest extinct relatives, and so likely appeared after we separated from the lineage that led to Neanderthals and Denisovans. This led the researchers to investigate the possible behavioral effects of this mutation. Previous research on lab-grown cells found that the ADSL variant seen in modern humans resulted in a more unstable version of the enzyme that broke down more quickly compared to the one in Neanderthals and Denisovans. Behavior changes The new study, published Aug. 4 in the journal PNAS, similarly found that, in mice, the modern variant leads to higher levels of the chemicals that ADSL normally acts on to synthesize purine in several organs, especially the brain. This finding supported the idea that the modern human version of ADSL is less active than the variant seen in Neanderthals and Denisovans. In experiments where mice learned they could get a drink of water following specific lights or sounds, female mice genetically modified to possess a version of ADSL similar to the kind seen in modern humans were better at getting water than their littermates without this variant were. This might suggest the human-like variant made female mice better at learning to connect the dots between the water and the lights or sounds, or more motivated to seek out the water in some way. The changes in behavior and ADSL levels seen in female mice with the modern-human variant of the enzyme was not seen in male mice. "It's unclear why only female mice seemed to gain a competitive advantage," study co-author Izumi Fukunaga, a researcher at the Okinawa Institute of Science and Technology, said in a statement. "Behavior is complex." Statistical tests analyzing Neanderthal; Denisovan; and modern African, European and East Asian DNA found that mutations in the ASDL gene appeared in modern human genomes at higher rates than random variations over time would suggest, making it likely that these mutations provided some evolutionary advantage. Perhaps running counter to the new findings, prior work found that genetic disorders leading to ADSL deficiency in modern humans can lead to intellectual disability, speech and language impairment, and other problems. This suggests that during evolution, modern humans had to balance the potential benefits of reducing ADSL activity with the problems that could occur from ADSL deficiency, study co-author Shin-Yu Lee, also of the Okinawa Institute of Science and Technology, said in a statement. Implications unclear Not everyone thinks the study has direct implications for why modern humans thrived or for why Neanderthals or Denisovans disappeared. These results in mice "don't say too much about human evolution at this stage," Mark Collard, a paleoanthropologist at Simon Fraser University in Burnaby, British Columbia who did not take part in this research, told Live Science. RELATED STORIES —What was the first human species? —2.6 million-year-old stone tools reveal ancient human relatives were 'forward planning' 600,000 years earlier than thought —'It makes no sense to say there was only one origin of Homo sapiens': How the evolutionary record of Asia is complicating what we know about our species However, the strategy of using mice to study the behavioral effects of genetic differences between modern humans and our closest extinct relatives "seems very promising as a way of investigating the evolution of our brain and behavior," Collard said. "I expect we'll see a cascade of studies like this one in the next few years." Future research can investigate the specific mechanisms by which changes in ADSL activity influence behavior. Scientists can also explore how changes in ADSL activity are associated with other behaviors and how multiple genetic changes might work in concert, the study authors wrote. Solve the daily Crossword


USA Today
12 hours ago
- USA Today
A black moon is set to happen this week; Here's why the rare heavenly occurrence happens
A rare black moon is set to occur this week, though night sky observers will not be able to see it. The astral phenomenon is set to leave a moon-sized dark spot in the heavenly panorama on the night of Saturday, Aug. 23. Friday's black moon is considered a "seasonal" version of the event as it will be the third new moon in a season that has four – according to Normally a season has three new moons but since the lunar cycle does not exactly align a fourth one occurs about every 33 months. There is nothing to see from the moon itself during a black moon as with all new moons the sunlit side faces away from Earth. However, that may provide a black canvas for space watchers to find stars and planets – weather permitting. Here's what to know about the black moon. Why do black moons occur? A black moon can happen under three astronomical patterns, according to and the Old Farmer's Almanac. When was the last black moon? The last seasonal Black Moon occurred on May 19, 2023, according to When is the next black moon? The next black moon will occur on Aug. 31, 2027, but that will be a "monthly" black moon where two new moons occur in one calendar month, according to What was the last notable moon phenomenon? August's full moon was known as the Sturgeon Moon, named after the fish. It peaked in the early morning hours of Aug. 9.


CNET
12 hours ago
- CNET
See Six Planets Line Up in the Upcoming Planet Parade Tonight
Fresh off the excitement of the Perseids meteor shower is a chance to see six planets lined up in the sky at once. These events, colloquially known as planet parades, only occur about once or twice a year, with the most recent one in February showing off all seven planets in our solar system at once. The next one will feature six of our closest celestial neighbors, and the event starts on Tuesday. The six planets sharing the sky will be Mercury, Venus, Jupiter, Saturn, Neptune and Uranus. Mars will technically be there at the beginning of the night, but it dips below the horizon right after sunset, so it won't be visible when all of the others are. Of those, Mercury, Venus and Jupiter will be visible to the naked eye, while the others will require high-powered binoculars or, preferably, a telescope. Even though they're spread out across the eastern and southern skies, the planets pair up with this one, making many of them pretty easy to find if you know what to look for. From east to west, here's where each one will be. Mercury - Eastern sky near the Cancer constellation. It'll pop over the horizon just before sunrise, so you'll have limited time to view it before the sun comes up and obfuscates it. - Eastern sky near the Cancer constellation. It'll pop over the horizon just before sunrise, so you'll have limited time to view it before the sun comes up and obfuscates it. Venus - At the lower tip of the Gemini constellation in the eastern sky, a couple of hours before sunrise. - At the lower tip of the Gemini constellation in the eastern sky, a couple of hours before sunrise. Jupiter - Will be near Venus, also in the Gemini constellation. It rises about an hour before Venus does. - Will be near Venus, also in the Gemini constellation. It rises about an hour before Venus does. Uranus - Will be near the upper tip of Taurus, rising after midnight. This one will require some magnification. If you see Pleiades, a cluster of stars at the upper tip of Taurus, you've gone too far upward. - Will be near the upper tip of Taurus, rising after midnight. This one will require some magnification. If you see Pleiades, a cluster of stars at the upper tip of Taurus, you've gone too far upward. Saturn and Neptune - These two are right next to each other and will be sitting between the Pisces and Cetus constellations in the southern skies. Neptune will be closer to Pisces while Saturn will be closer to Cetus. Since it takes a long time for planets to move through the night sky, Aug. 20 is the starting point, and it'll run through the rest of the month. Once September hits, Mercury will be too close to the sun, which will obscure it. From that point, there will be a five-planet parade for a while until Venus sinks below the horizon in early October. So, in all, you'll have a chance to see at least five planets for over a month. Will the planet parade be visible from my region? Yes. We double checked Stellarium's sky map from a variety of locations across the country, and everything above will be applicable everywhere in the continental US. Per Starwalk, the parade will also be visible in other parts of the world after the following dates for about the same amount of time (one to two weeks). Abu Dhabi - Aug. 9 - Aug. 9 Athens, Beijing, Berlin, Tokyo and London - Aug. 10 - Aug. 10 Mumbai and Hong Kong - Aug. 11 - Aug. 11 Reykjavik, São Paulo and Sydney - Aug. 12 The planets will move based on date, though. The above locations are where they'll be around Aug. 20, but if you're looking a week or so later, they'll be in the same general area, but will shift to a slightly different part of the sky. Will I need any special equipment? Yes. Neptune and Uranus, especially, will require some sort of magnification to see. We recommend a telescope, but high-powered binoculars may work if the sky is dark enough. Saturn is also difficult to see without magnification, so you'll want it for that too. Jupiter, Venus, and Mercury should be visible on their own with the naked eye. We also recommend taking a trip out to the country, as light pollution from suburbs and cities can make it even more difficult to see Neptune and Uranus. The moon will be out as well, which may make Venus, Jupiter, and Mercury harder to see. Other factors like weather may also make it more difficult to see all of them. If you're lucky, you may see a few shooting stars at the tail end of Perseids as well.