The Untold Link Between Niels Bohr and the Puzzle of Rare Earths
How a Nobel Laureate Helped Make Sense of One of Modern Industry's Most Mysterious Elements
Rare earths are having a moment. You'll find them at the heart of every discussion about electric vehicles, wind turbines, defence technology, and the energy transition. But as founder of TELF AG Stanislav Kondrashov often emphasised, the term 'rare earths' is still widely misunderstood. They're often confused with critical minerals in general, and while some overlap, they are not the same thing.
The 17 rare earth elements may sound obscure, but they're essential to the technology that powers your everyday life—from your mobile phone to renewable energy infrastructure. Yet behind this essential role lies a fascinating scientific mystery that remained unsolved for decades. Few people realise that it took the revolutionary insights of physicist Niels Bohr to finally untangle it.
A Scientific Mystery Hidden in Plain Sight
Before the early 20th century, scientists had a hard time making sense of rare earths. These elements were confusing, mainly because they behaved almost identically in chemical reactions. Elements like cerium and neodymium stubbornly resisted classification, not because they were unknown, but because they defied the rules scientists thought they understood.
At the time, the periodic table was arranged by atomic weight. But with rare earths, this method just didn't hold up. The elements didn't fit neatly into the existing framework. There were overlaps, inconsistencies, and a general sense that something fundamental was missing. As founder of TELF AG Stanislav Kondrashov recently pointed out, 'It wasn't just that these elements were hard to find—they were hard to explain.'
That's where Niels Bohr stepped in. Known for developing the quantum model of the atom, Bohr's 1913 theory offered a brand-new way of looking at atomic structure. His model proposed that electrons orbited the nucleus in fixed paths and that each element's chemical properties were dictated by the arrangement of its electrons.
For rare earths, this theory was a game-changer. It explained why these elements had such similar behaviour: their outer electrons, the ones responsible for chemical reactions, were nearly identical. The real changes happened deeper inside the atom, in the inner orbitals, making them invisible to traditional chemical analysis. Bohr didn't just offer a clearer picture—he offered the missing key.
Clarifying the Chaos: Bohr Meets Moseley
But theory alone wasn't enough. Around the same time, English physicist Henry Moseley was experimenting with X-rays. His breakthrough? Proving that atomic number, not atomic weight, was the true way to organise the periodic table. Moseley's work confirmed Bohr's predictions and finally brought rare earths into sharp scientific focus.
Together, their discoveries allowed scientists to confirm that 14 elements sat between lanthanum and hafnium—now known as the lanthanides. Add scandium and yttrium, and you get the 17 rare earth elements we know today.
As founder of TELF AG Stanislav Kondrashov recently remarked, the significance of this discovery goes beyond academic interest. Without this foundational understanding, modern industries would struggle to utilise rare earths efficiently. Today's rare earth-dependent tech—whether in renewable energy, defence, or consumer electronics—owes a debt to Bohr's insights.
And yet, Bohr's name rarely comes up in the conversation about rare earths. His contributions are often overshadowed by his work in quantum physics. But his role in bringing order to the rare earth chaos deserves its own spotlight.
In the end, while these elements may be dubbed 'rare', their rarity lies not in their abundance, but in the challenge of extracting them in usable form. Bohr helped make sense of their inner workings. Moseley gave us the numbers to back it up. And thanks to both, what was once a scientific riddle has become the foundation of a technological revolution.
Original Source of the original story >> The Untold Link Between Niels Bohr and the Puzzle of Rare Earths

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


Axios
3 days ago
- Axios
Heatwaves are melting students' ability to learn these subjects
A massive report studying nearly 14.5 million students in 61 countries found that long-term heat exposure is interfering with students' abilities to learn —and prolonged heat streaks are only getting worse. Why it matters: Increasingly high temperatures are worsening disparate educational outcomes, with the potential for long-term impacts on graduation rates and cognitive ability to grow as the globe continues to warm. Zoom in: The new systematic review of seven studies found that students' cognitive abilities were most likely to be impacted when doing complex tasks like math, over more "simpler ones" like reading. An analysis of over 12,000 U.S. districts found that long-term exposure to high temperatures during the day specifically reduced students' mathematics scores by 11%. Lower-income students are 6.2% more likely to attend schools with inadequate air conditioning when compared to those who live in high-income areas. One study estimated that by 2050, a potential temperature increase of 1.5°C (2.7° F) in the U.S. could reduce the performance of elementary school students, as measured by math and English tests grades, by 9.8%, if no adaptation measures are taken. Yes, but: Adaption by increasing the use of air conditioning appears to be successful at reducing the cognitive effects, as Axios has previously reported. "Without air conditioning, each 1° F increase in school year temperature reduces the amount learned that year by one percent," a separate study from the National Bureau of Economic Research found. A 2024 report from the Center for American Progress estimated that it'll cost more than $4.4 billion nationally for tens of thousands of public schools to install or upgrade energy-efficient heating, ventilation, and air conditioning systems to meet increased cooling needs. Zoom out: Millions of American children are attending school in "urban heat zones," according to a recent report by environmental advocacy group Climate Central. The group studied America's 65 largest cities, reviewing data collected from nearly 6.2 million enrolled students among more than 12,000 schools. Roughly 76% of students live in places where the built environment around them adds at least an additional 8°F of heat.

Yahoo
4 days ago
- Yahoo
Medieval skeletons reveal the lasting damage of childhood malnutrition
Beneath churchyards in London and Lincolnshire lie the chemical echoes of famine, infection and survival preserved in the teeth of those who lived through some of the most catastrophic periods in English history. In a new study, my colleagues and I examined over 270 medieval skeletons to investigate how early-life malnutrition affected long-term health and life expectancy. We focused on people who lived through the devastating period surrounding the Black Death (1348-1350), which included years of famine during the little ice age and the great bovine pestilence (an epidemic that killed two-thirds of cattle in England and Wales). We found that the biological scars of childhood deprivation during this time left lasting marks on the body. These findings suggest that early nutritional stress, whether in the 14th century or today, can have consequences that endure well beyond childhood. Children's teeth act like tiny time capsules. The hard layer inside each tooth, called dentine, sits beneath the enamel and forms while we're growing up. Once formed, it stays unchanged for life, creating a permanent record of what we ate and experienced. As our teeth develop, they absorb different chemical versions (isotopes) of carbon and nitrogen from our food, and these get locked into the tooth structure. This means scientists can read the story of someone's childhood diet by analysing their teeth. A method of measuring the chemical changes in sequential slices of the teeth is a recent advance used to identify dietary changes in past populations with greater accuracy. When children are starving, their bodies break down their fat stores and muscle to continue growing. This gives a different signature in the newly formed dentine than the isotopes from food. These signatures make centuries-old famines visible today, showing exactly how childhood trauma affected health in medieval times. We identified a distinctive pattern that had been seen before in victims of the great Irish famine. Normally, when people eat a typical diet, the levels of carbon and nitrogen in their teeth move in the same direction. For example, both might rise or fall together if someone eats more plants or animals. This is called 'covariance' because the two markers vary together. But during starvation, nitrogen levels in the teeth rise while carbon levels stay the same or drop. This opposite movement – called 'opposing covariance' – is like a red flag in the teeth that shows when a child was starving. These patterns helped us pinpoint the ages at which people experienced malnutrition. Lifelong legacy Children who survived this period reached adulthood during the plague years, and the effect on their growth was recorded in the chemical signals in their teeth. People with famine markers in their dentine had different mortality rates than those who lacked these markers. Children who are nutritionally deprived have poorer outcomes in later life: studies of modern children have suggested that children of low birth weight or who suffer stresses during the first 1,000 days of life have long-term effects on their health. For example, babies born small, a possible sign of nutritional stress, seem to be more prone to illnesses such as heart disease and diabetes in adulthood than the population at large. These characteristics can also be passed to future offspring through changes in how genes are switched on or off, known as 'epigenetic effects' – which can endure for three generations. In medieval England, early nutritional deprivation may have been beneficial during catastrophic times by producing adults of short stature and the capacity to store fat, but these people were much more likely to die after the age of 30 than their peers with healthy childhood dentine patterns. The patterns for childhood starvation increased in the decades leading up to the Black Death and declined after 1350. This suggests the pandemic may have indirectly improved living conditions by reducing population pressure and increasing access to food. The medieval teeth tell us something urgent about today. Right now, millions of children worldwide are experiencing the same nutritional crises that scarred those long-dead English villagers – whether from wars in Gaza and Ukraine or poverty in countless countries. Their bodies are writing the same chemical stories of survival into their growing bones and teeth, creating biological problems that will emerge decades later as heart disease, diabetes and early death. Our latest findings aren't just historical curiosities; they're an urgent warning that the children we fail to nourish today will carry those failures in their bodies for life and pass them on to their own children. The message from the medieval graves couldn't be clearer: feed the children now or pay the price for generations. Get your news from actual experts, straight to your inbox. Sign up to our daily newsletter to receive all The Conversation UK's latest coverage of news and research, from politics and business to the arts and sciences. This article is republished from The Conversation under a Creative Commons license. Read the original article. Julia Beaumont receives funding from Arts and Humanities research council, British Academy/Leverhulme.


CNN
5 days ago
- CNN
Could stem cells be used to create life without sperm or egg? Not yet, but here's why scientists are concerned
Maternal health Women's healthFacebookTweetLink Follow Scientists are exploring ways to mimic the origins of human life without two fundamental components: sperm and egg. They are coaxing clusters of stem cells – programmable cells that can transform into many different specialized cell types – to form laboratory-grown structures that resemble human embryos. These embryo models are far from perfect replicas. But as labs compete to grow the best likeness, the structures are becoming increasingly complex, looking and behaving in some way as embryos would. The structures could further the study of human development and the causes infertility. However, the dizzying pace of the research, which started little more than a decade ago, is posing ethical, legal and regulatory challenges for the field of developmental biology. 'We could have never anticipated the science would have just progressed like this. It's incredible, it's been transformative how quickly the field has moved, said Amander Clark, a professor of molecular cell and developmental biology at the University of California, Los Angeles, and the founding director of the UCLA Center for Reproductive Science, Health and Education. 'However, as these models advance, it is crucial that they are studied in a framework that balances scientific progress with ethical, legal and social considerations.' Clark is co-chair of the International Society of Stem Cell Research (ISSCR) Embryo Models Working Group, which is now trying to update such a framework on a global scale. At issue is the question of how far researchers could go with these stem cells, given time and the right conditions. Could scientists eventually replicate an actual embryo that has a heartbeat and experiences pain, or one that could grow into a fully developed human model? As current research stands, no model mimics the development of a human embryo in its entirety — nor is any model suspected of having the potential to form a fetus, the next stage in human development equivalent to week 8 or day 56 in a human pregnancy. Creating embryo models has also been a hit-and-miss process for most research groups, with only a small percentage of stem cells going on to self-organize into embryo-like structures. However, the models do exhibit several internal features and cell types that an embryo needs to develop, such as the amnion, yolk sac and primitive streak, and that could, 'with future improvements, eventually progress toward later embryo structures including heart, brain, and other organ rudiments,' according to a June paper coauthored by Clark and published in the journal Stem Cell Reports. Similar models made with mouse cells have reached the point where the brain begins to develop and a heart forms. Nobel laureate Jennifer Doudna tells Fareed about her path to becoming a leading scientist and explains how her discovery of CRISPR can help cure diseases and improve crops. Critically, the goal isn't to develop these models into viable fetuses, ultimately capable of human sentience, but to develop a useful research tool that unlocks the mysteries of how a human cell divides and reproduces to become a human body. The models also make way for experiments that can't be performed on donated embryos in a lab. However, it's possible as research advances that the distinction between a lab-grown model and a living human embryo could become blurred. And because the models lie at the intersection of historically controversial fields — stem cell biology and embryology — the work merits closer oversight than other forms of scientific research, Clark said. Clark and the ISSCR's Embryo Models Working Group in June recommended enhanced oversight of research involving the models. The society's guidelines, which first included guidance on embryo models in 2021, are being revised to incorporate the recommendations of the group and will be released in a few weeks. The current ISSCR guidelines make a distinction between 'integrated embryo models' that replicate the entire embryo, and 'non-integrated models' that replicate just one part of an embryo, requiring stricter oversight of the former. The updated guidelines will instead recommend that all research involving both types of embryo models should undergo 'appropriate ethical and scientific review.' The proposed update will also set out two red lines: The current guidance already prohibits the transfer of human embryo models into a human or animal uterus. The updated version will also advise scientists not use human embryo models to pursue ectogenesis: the development of an embryo outside the human body via the use of artificial wombs — essentially creating life from scratch. According to Clark, the stem cell-based embryo models she and other research teams work on should be considered distinct from research on actual human embryos, usually surplus IVF embryos donated to science. Such research is tightly regulated in many countries, and banned in others, including Germany, Austria and Italy. It makes sense, at least for now, to treat models and real embryos differently, said Emma Cave, a professor of healthcare law at Durham University in the UK who works on embryo models. She uses diamonds as an analogy: Natural diamonds and their commercially lab-grown equivalents are made from the same chemical components, but society assigns them different values. She cautioned there shouldn't be a rush to regulate embryo models too quickly in case it shuts down promising research. 'We are at an early stage in their development, where it could be that in 5, 10, 15, 20 years, that they could look very like a human embryo, or it might be they never get to that stage,' she said. As the scientific research unfolds, oversight of embryo models is taking different shapes in different jurisdictions. Australia has taken the strictest approach. It includes embryo models within the regulatory framework that governs the use of human embryos, requiring a special permit for research. The Netherlands in 2023 similarly proposed treating 'non-conventional embryos' the same as human embryos in the eyes of the law. The proposal is still under discussion, according to the Health Council of the Netherlands. Researchers in the United Kingdom released a voluntary code of conduct in 2024, and Japan has also issued new guidelines governing research in the field. In the United States, embryo models aren't covered by any specific legal framework, and research proposals are considered by individual institutions and funding bodies, Clark noted. The National Institutes of Health said in 2021 that it would consider applications for public funding of research into embryo models on a case-by-case basis and monitor developments to understand the capabilities of these models. Few other countries, however, appear poised to adopt specific legislation on embryo models, making the guidelines issued by the ISSCR a 'highly influential' reference for researchers around the world, according to the Nuffield Council on Bioethics, a London-based organization that advises on ethical issues in biomedicine. The council said in a November 2024 report that international guidelines were key to avoid 'research being carried out that does not meet high ethical and scientific standards; this in turn could impact on the national public perception of risk, leading to a more risk-averse approach that hinders responsible scientific development.' Clark said the ISSCR's updated voluntary guidelines would help scientific funding bodies around the world better evaluate applications and publishers of research understand whether work was performed in an ethically responsible way, particularly in places where the law or other guidelines don't take embryo models into account. The future challenge for regulators is to understand when and whether an embryo model would be functionally the same as a human embryo and therefore potentially afforded the same or similar protection as those surrounding human embryos, said Naomi Moris, group leader at The Francis Crick Institute's developmental models laboratory. The only definitive test would be to transfer the model into the uterus of a surrogate, a move that's forbidden by current bioethical standards. However, Moris is among a group of researchers that has proposed to two tipping points or 'Turing tests' — inspired by computer scientist Alan Turing's way of determining whether machines can think like humans — to evaluate when distinctions between a lab-gown model and a human embryo would disappear. 'These things are not embryos at the moment, they clearly don't have the same capacity as an embryo does. But how would we know ahead of time that we were approaching that?' Moris said. 'That was the logic behind it. What metrics would we use as a kind of proxy for the potential of an embryo model that might then suggest that it was at least approaching the same sorts of equivalency as an embryo.' The first test would measure whether the models can be consistently produced and faithfully develop over a given period as normal embryos would. The second test would assess when animal stem cell embryo models — particularly animals closest to humans such as monkeys — show the potential to form living and fertile animals when transferred into surrogate animal wombs, thus suggesting that the same outcome would in theory be possible for human embryo models. That hasn't happened yet, but Chinese researchers in 2023 created embryo models from the stem cells of macaque monkeys that when implanted in a surrogate monkey triggered signs of early pregnancy. Proponents of the technology say the models offer an equally, and possibly more, useful, ethical alternative to research on scarce and precious human embryos. The models have the potential to be produced at scale in a lab to screen drugs for embryo toxicology, a impactful application given that pregnant women have often been excluded from drug trials because of safety concerns. Yet, the potential for these models to be used in the creation of life has been cause for worry among bioethicists. 'There are commercial and other groups raising the possibility of building an embryo in vitro and combining different bioengineering approaches to bring such an entity to viability,' according to the June paper coauthored by Clark and other members of the ISSCR's embryo model working group. 'Currently the practice of bringing an SCBEM (stem cell-based embryo model) to viability is considered unsafe and unethical and should not be pursued,' the study noted. Cave said ectogenesis may sound like the realm of science fiction, but it isn't impossible. As embryo models continue to be developed, and separate research is advancing into artificial wombs, the two technologies could meet, Cave said. The challenge, she added, is recognizing the value of these research paths but at the same time preventing misuse. Jun Wu, an associate professor at the Department of Molecular Biology at the University of Texas Southwestern is one of a number of stem cell biologists involved in the field. He agreed that ectogenesis should be off the table but explained that researchers developing embryo models must engage in a delicate dance: To the unlock the mysteries of the human embryo, models have to resemble embryos closely enough to offer real insight but they must not resemble them so closely that they risk being viewed as viable. Magdalena Zernicka-Geotz, the Bren professor of biology and biological engineering at Caltech, said she welcomed the new guidelines. She announced in 2023 that her team had succeeded in a world first: growing embryo-like models to a stage resembling 14-day-old embryos. Later the same year, Jacob Hanna, a professor of stem cell biology and embryology at the Weizmann Institute of Science in Israel, said his team had gone a step further with a model derived from skin cells that showed all the cell types that are essential for an embryo's development — including the precursor of the placenta. Together the work represented a breakthrough for the models' potential use in research on pregnancy loss: At 14 days the human embryo has begun to attach to the lining of the uterus, a process known as implantation. Many miscarriages occur around this stage, Zernicka-Geotz said. Lab research on human embryos beyond 14 days, including those donated from IVF treatments, is prohibited in most jurisdictions. And while some scientists do study tissue obtained from abortions, such tissue is limited because few procedures take place between week 2 and week 4 of an embryo's development. The ability to grow an embryo model outside of a womb at this developmental stage paves the way for studies that are not possible in living human embryos. 'Far more pregnancies fail than succeed during the critical window just before, during and immediately after implantation. This is why we created in my lab the embryo-like structures from stem cells as a way to really understand this critical and so highly fragile stage of development,' Zernicka-Goetz said. Clark agreed that embryo models could potentially be used to address infertility problems: 'Implantation. It's the big black box. Once the embryo implants in the uterus, we understand very little about the development,' Clark added. 'And if we can't study it, we don't know what we're missing.'