logo
Ancient 'military outpost' in North Macedonia might be birthplace of Alexander the Great's grandmother

Ancient 'military outpost' in North Macedonia might be birthplace of Alexander the Great's grandmother

Yahoo23-04-2025

When you buy through links on our articles, Future and its syndication partners may earn a commission.
Archaeologists working in North Macedonia may have discovered the remains of Lyncus, an ancient city that was the capital of the Kingdom of Lyncestis.
More analysis is needed to support the finding but, if confirmed, the discovery could reveal the location of the place where Alexander the Great's paternal grandmother was born.
Lyncestis was a small kingdom that flourished in North Macedonia, which was incorporated into the Macedonian Empire during the reign of King Philip II (359 to 336 B.C.). Eurydice I of Macedon, the mother of Philip II and grandmother of Alexander (who reigned from 336 to 323 B.C.), was likely born in Lyncus, according to historical accounts.
Archaeologists have known about the site, located near the village of Crnobuki, since 1966, and it was initially believed to be a military outpost rather than a city, according to a statement from California State Polytechnic University, Humboldt (Cal Poly Humboldt).
It wasn't until 2023 that a team of researchers conducted a lidar (light detection and ranging) survey, using aerial drones equipped with lasers to create a map of the site's topography. This technique can penetrate foliage covering an archaeological site and has been widely used throughout the world.
The survey revealed that the city had an acropolis that's at least 7 acres (2.8 hectares) in size. Besides the remains of a textile workshop and what appears to be a theater, the archaeologists also found a variety of artifacts, including pottery, coins, game pieces and even a theater ticket made of clay.
Image 1 of 2
A ceramic token found in 2023 indicates that the site has a yet-to-be excavated theater.
Image 2 of 2
A coin found at the site that was minted while Alexander the Great was still alive.
Until now, researchers thought that the city was built long after Alexander the Great's death, during the reign of Philip V (221 to 179 B.C.). But the discovery of a coin minted between 325 and 323 B.C. indicates that it was in use during Alexander's lifetime, according to the statement.
RELATED STORIES
—Ancient tomb really does hold Alexander the Great's father, controversial study claims
—Secrets of Alexander the Great mosaic revealed after 1st-of-its-kind analysis
—Europe's oldest known village teetered on stilts over a Balkan lake 8,000 years ago
Moreover, the team of archaeologists unearthed axes and fragments of ceramic vessels at the site, which shows that this site has been occupied by humans as far back as the Bronze Age (3300 to 1200 B.C.). They plan to continue excavation.
The site's discovery may shed more light on an influential kingdom. Engin Nasuh, a curator at Macedonia's National Institute and Bitola Museum and one of the lead archaeologists, said in the statement that ancient Macedonia was "a civilization that played a major role in today's understanding of the world and the desire to connect different civilizations and cultures."
Editor's note: This story was first published on April 11, 2025.

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

The Dreadful Policies Halting Archeological Discoveries
The Dreadful Policies Halting Archeological Discoveries

Yahoo

time42 minutes ago

  • Yahoo

The Dreadful Policies Halting Archeological Discoveries

Thanks to the creative application of new technologies, the 2020s are quietly shaping up to be a golden age of archaeology. In 2023, then-21-year-old Luke Farritor (now with the Department of Government Efficiency) combined machine‑learning pattern recognition with high‑resolution CT scans to decipher the first word from the Herculaneum scrolls—a Roman library charred by Mount Vesuvius in 79 A.D. Fully decrypting the library could ultimately double the surviving corpus of Ancient Greek and Roman literature—an unprecedented bonanza for classical scholarship. Analysis of ancient DNA has resolved long-debated questions about human migrations. After sequencing hundreds of Bronze Age human genomes, David Reich's research team at Harvard positively identified southwest Russia as the geographical origin of the Indo-European languages, while other genomic work has dated Homo sapiens-Neanderthal interbreeding to 47,000 years ago, several millennia prior to earlier best guesses. Fossilized human footprints in White Sands, New Mexico, have been conclusively dated to about 23,000 years ago—proof that people were in North America during the last Ice Age and forcing scholars to rethink when and how humans first crossed into the New World. Lidar has recently revealed massive ancient cities under jungle canopies, from the Mayan platform of Aguada Fénix in Mexico—larger than the Great Pyramid of Giza—to mysterious urban centers in the ancient Amazon. These developments—whether driven by artificial intelligence, the decryption of ancient genomics, or airborne lasers—promise to momentously expand society's understanding of humanity's past. Notably absent from this bounty, however, are the fruits of traditional, physical, Indiana Jones-style archaeology. The world of bits, as has often been the case these days, is leaving the world of atoms in the dust. While the storied bits over atoms problem is a complicated one, legal mechanisms are straightforwardly to blame for throttling archeological discovery. The case of Italian antiquities policy is paradigmatic. Since the 1930s, Italy—along with Greece, Turkey, and Egypt—has vested ownership of all antiquities in the state. Commerce in freshly unearthed artifacts is outlawed, and unauthorized excavation is punishable by hefty fines and sometimes prison time. Even using a metal detector requires a permit. Edward Luttwak, a historian and author of The Grand Strategy of the Roman Empire, explains that in Italy, "if you find something, you report it to the authorities. The authorities take it, goodbye. Most often, what they take from you, they put in a depot, a basement, a warehouse, and it never even gets shown." This is the unfortunate lot of the fortunate discoverer of an Italian artifact. Report a Roman coin? It'll be confiscated. Find an Etruscan urn while planting olives? Your land will be turned into an archaeological site the government may never have time to excavate. It's unsurprising, then, that Italians frequently don't report their findings to the government. Many artifacts end up on the black market (in 2023, Italy's Carabinieri Art Squad seized nearly 70,000 illegally excavated artifacts), or are even simply destroyed or hidden away. Private hoarding is an especially pernicious problem: When "illegally excavated" (read: most) Italian artifacts are privately held in people's houses, they are lost both to scholarship and public view. "You could fill twice the museums that exist in Italy from what people have hidden in their houses," says Luttwak, "which they wouldn't hide if you could report [them] to the authorities like they do in England." The British model provides a striking contrast. Since the 1996 Treasure Act, British law has required that significant archaeological finds be reported. Instead of simply seizing them, if the state wishes to retain an item, it must compensate the finder and landowner at its full market value. To capture the far larger universe of objects that fall outside the law's narrow legal definition of "treasure," the state-sponsored Portable Antiquities Scheme (PAS) established a voluntary nationwide program through which average Britons can log any find, whether or not the state intends to acquire it, into an open scientific database. As of 2020, over 1 million objects have been logged in PAS. According to Michael Lewis, head of Portable Antiquities and Treasure at the British Museum, over 90 percent of PAS-recorded items are found by metal detectorists on cultivated land, indicating how the scheme has turned what was once seen as a threat into a fountainhead of archaeological data. Thanks to these policies, Britain has been increasingly outpacing Italy in Roman archaeology despite its relatively modest classical history, as seen in this viral map of the provenance of hoards of Roman coins. Notice the sheer quantity of Roman coin discoveries reported in the U.K., far surpassing those in Italy. This disparity isn't explained by Roman Britain being richer than Roman Italy (quite the opposite), but by modern Britain recognizing and leveraging incentives to bring history out of occultation. The Great Stagnation of physical archaeology is a choice. The failure of policymakers to get the basics right—to make physical archaeology worth anyone's time—renders the richest landscapes fallow. Luttwak's attention is on one such landscape: the confluence of the Busento and Crati rivers on the edge of Cosenza, Calabria. Contemporary accounts record that in 410 A.D. the Visigoth chieftain Alaric—fresh from sacking Rome—was buried beneath the temporarily diverted river along with the treasures of the Eternal City. "Alaric's treasure is located in the southern part of the city of Cosenza," says Luttwak. "It was documented by an eyewitness." Alaric took "gold and silver objects…statues, and all kinds of things—possibly even the Temple menorah….When Alaric died in Cosenza, he got as the king one third of the treasure [to be] buried with him." "It could be found," explains Luttwak, "with hovering metal detectors, because he was buried with his weapons, too." Alaric's hoard—and maybe Judaism's most iconic physical symbol—should be discoverable today with an aerial anomaly survey and some clever hydraulics. The technology is ready; the incentives are not. Change the rules, and the payoff could be extraordinary. The post The Dreadful Policies Halting Archeological Discoveries appeared first on

Why does NASA's Perseverance rover keep taking pictures of this maze on Mars?
Why does NASA's Perseverance rover keep taking pictures of this maze on Mars?

Yahoo

timean hour ago

  • Yahoo

Why does NASA's Perseverance rover keep taking pictures of this maze on Mars?

When you buy through links on our articles, Future and its syndication partners may earn a commission. If you've spent any time perusing the carousel of raw images from NASA's Perseverance Mars rover, you might have stumbled across an odd subject: a tiny, intricate maze etched into a small plate, photographed over and over again. Why is the Perseverance rover so obsessed with this little labyrinth? It turns out the maze is a calibration target — one of 10 for Perseverance's Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals instrument, otherwise known for its fun acronym, SHERLOC. This Sherlock Holmes–inspired tool is designed to detect organic compounds and other minerals on Mars that could indicate signs of ancient microbial life. To do that accurately, the system must be carefully calibrated, and that's where the maze comes in. Located on the rover's seven-foot (2.1-meter) robotic arm, SHERLOC uses spectroscopic techniques — specifically Raman and fluorescence spectroscopy — to analyze Martian rocks. In order to ensure accurate measurements, it must routinely calibrate its tools using a set of reference materials with specific properties. These are mounted on a plate attached to the front of the rover's body: the SHERLOC Calibration Target. "The calibration targets serve multiple purposes, which primarily include refining the SHERLOC wavelength calibration, calibrating the SHERLOC laser scanner mirror, and monitoring the focus and state of health of the laser," Kyle Uckert, deputy principal investigator for SHERLOC at NASA's Jet Propulsion Laboratory, tells The target is arranged in two rows, each populated with small patches of carefully selected materials. The top row includes three critical calibration materials: aluminum gallium nitride (AlGaN) on sapphire discs; the UV-scattering material Diffusil; and Martian meteorite SaU008, whose mineral makeup is already known and helps align wavelength calibration with real Martian geology. This is also where you'll find the maze. Why a maze? "SHERLOC is all about solving puzzles, and what better puzzle than a maze!" says Uckert. The purpose of the maze target is to calibrate the positioning of the laser scanner mirror and characterize the laser's focus, which requires a target with sharply contrasting spectral responses. The maze serves this purpose well." The maze is made of chrome-plated lines just 200 microns thick (about twice the width of a human hair) printed onto silica glass. "There are no repeating patterns and the spectrum of the chrome plating is distinct from the underlying silica glass," says Uckert. That makes it possible to measure the laser's focus and accuracy with extreme precision. If you look closely at the maze, you'll also notice a Sherlock Holmes portrait right at the center. While it's a cheeky nod to the instrument's name, it serves a practical function. "SHERLOC spectral maps can resolve the 200 micron thick chrome plated lines and the 50 micron thick silhouette of Sherlock Holmes at the center of the maze," Uckert notes. Like the portrait, the bottom half of the SHERLOC Calibration Target also serves a dual purpose: spectral instrument calibration and spacesuit material testing. It contains five samples of materials used in modern spacesuits, including some materials you might be familiar with, like Teflon, Gore-Tex, and Kevlar. And don't miss the "fun" target in this row — there's a geocache marker backing a polycarbonate target, and it does indeed have a tie-in to Sherlock Holmes. RELATED STORIES: — Perseverance rover's Mars samples show traces of ancient water, but NASA needs them on Earth to seek signs of life — Perseverance Mars rover finds 'one-of-a-kind treasure' on Red Planet's Silver Mountain — Perseverance Mars rover becomes 1st spacecraft to spot auroras from the surface of another world These materials are actively being tested under Mars conditions to determine how they hold up over time in situ, which is crucial for planning human exploration of the Red Planet. "Note that we use all of these materials to fine-tune SHERLOC," adds Uckert. "As a bonus, the spacesuit materials support unique science that will help keep future astronauts safe." Now, if all these Sherlock Holmes–related Easter eggs on the SHERLOC Calibration Target aren't enough for you, there's one final link. SHERLOC has a color camera as part of its instrumentation suite that sometimes images the target, and it's called the Wide Angle Topographic Sensor for Operations and eNgineering. Yes, SHERLOC's sidekick is called WATSON.

Private Japanese spacecraft crashes into moon in 'hard landing,' ispace says
Private Japanese spacecraft crashes into moon in 'hard landing,' ispace says

Yahoo

time9 hours ago

  • Yahoo

Private Japanese spacecraft crashes into moon in 'hard landing,' ispace says

When you buy through links on our articles, Future and its syndication partners may earn a commission. A spacecraft from Japan attempting to make the country's first private moon landing on Thursday instead crashed into the lunar surface in a disappointing second failure for its ispace builders. The Japanese company's Resilience spacecraft aimed to make a soft touchdown in the Mare Frigoris ("Sea of Cold") region of the moon's near side today (June 5) at 3:17 p.m. EDT (1917 GMT; 4:17 a.m. on June 6 Japan Standard Time). But telemetry from the lander stopped one minute and 45 seconds before the scheduled touchdown, apparently due to an equipment malfunction. It was reminiscent of ispace's first lunar landing attempt, in April 2023. The spacecraft also went dark during that try, which was eventually declared a failure. "We wanted to make Mission 2 a success but unfortunately we were able to land," ispace founder and CEO Takeshi Hakamada told reporters in a press conference a few hours after the landing try. Preliminary data based on telemetry from Resilience's final moments suggest that the lander's laser rangefinder experienced some sort of delays while measuring the probe's distance to the lunar surface. "As a result, the lander was unable to decelerate sufficiently to reach the required speed for the planned lunar landing," ispace officials wrote in an update. "Based on these circumstances, it is currently assumed that the lander likely performed a hard landing on the lunar surface." A hard landing means Resilience hit the moon's surface faster than planned. It's unlikely it survived in any condition to proceed with its two-week mission, or deploy the small Tenacious rover built by the European Space Agency. "For those who have supported us, we'd really like to apologize," Hakamada said, adding that ispace is committed to learning from its failures for future flights. "We have to continue on our mission to have moon exploration by [the] Japanese." Resilience stood 7.5 feet (2.3 meters) tall and weighs about 2,200 pounds (1,000 kilograms) when fully fueled. It's the second of ispace's Hakuto-R lunar landers, which explains the name of its current flight: Hakuto-R Mission 2. Hakuto is a white rabbit in Japanese mythology. The ispace folks first used the name for their entry in the Google Lunar X Prize, which offered $20 million to the first private team to soft-land a probe on the moon and have it accomplish some basic exploration tasks. The Prize ended in 2018 without a winner, but ispace carried on with its lunar hardware and ambitions. (The "R" in Hakuto-R stands for "reboot.") The company made big strides on Hakuto-R Mission 1, which successfully reached lunar orbit in March 2023. But that spacecraft couldn't stick the landing; it crashed after its altitude sensor got confused by the rim of a lunar crater, which it mistook for the surrounding lunar surface. ispace folded the lessons learned into Hakuto-R Mission 2, which launched on Jan. 15 atop a SpaceX Falcon 9 rocket from Florida's Space Coast. That was a moon-mission twofer for SpaceX: Resilience shared the rocket with Blue Ghost, a robotic lander built and operated by the Texas company Firefly Aerospace that carried 10 scientific instruments for NASA via the agency's Commercial Lunar Payload Services (CLPS) program. Blue Ghost arrived in orbit around the moon on Feb. 13 and landed successfully on March 2, pulling off the second-ever soft lunar touchdown by a private spacecraft. That mission went well from start to finish; the solar-powered Blue Ghost operated on the moon for two weeks as planned, finally going dark on March 16 after the sun set over its landing site. Resilience took a longer, more energy-efficient path to the moon, which featured a close flyby of Earth's nearest neighbor on Feb. 14. The lander arrived in lunar orbit as planned on May 6, then performed a series of maneuvers to shift into a circular path just 62 miles (100 kilometers) above the surface. That set the stage for Thursday's action. Resilience used a series of thruster burns to descend, decelerate and steer its way toward a landing in Mare Frigoris, a vast basaltic plain that lies about 56 degrees north of the lunar equator. But something went wrong when Resilience was just 192 meters above the lunar surface. It's not clear if Resilience was moving faster than expected because of the laser rangefinder data lag, or if that data lag was caused by the probe moving faster than planned, ispace said. "First, we have to figure out the root cause for the phenomenon we observed, and then we have to utilize them into Mission 3 and Mission 4," Hakamada said. If Resilience had succeeded today, it would be just the second soft lunar touchdown for Japan; its national space agency, JAXA, put the SLIM ("Smart Lander for Investigating Moon') spacecraft down safely in January 2024. Today's landing attempt was part of a wave of private lunar exploration, which kicked off with Israel's Beresheet lander mission in 2019. Beresheet failed during its touchdown try, just as ispace's first mission did two years ago. Pittsburgh-based Astrobotic had an abortive go in January 2024 with its Peregrine lunar lander, which suffered a crippling fuel leak shortly after launch and ended up crashing back to Earth. A month later, Houston company Intuitive Machines made history with its Odysseus craft, which touched down near the lunar south pole. Odysseus tipped over shortly after touchdown but continued operating for about a week. Its successor, named Athena, also toppled during its lunar touchdown on March 6 — just four days after Blue Ghost hit the gray dirt — with more serious consequences: The probe went dark within a few short hours. Peregrine, Blue Ghost, Odysseus and Athena all carried NASA science payloads. They were supported by the agency's CLPS program, which aims to gather cost-efficient science data ahead of crewed Artemis moon landings, the first of which is slated for 2027. Resilience carried five payloads, but they don't belong to NASA; Hakuto-R Mission 2 is not a CLPS effort. Three of these five are pieces of science gear that aim to help human exploration of the moon: a deep-space radiation probe developed by National Central University in Taiwan; a technology demonstration from the Japanese company Takasago Thermal Engineering Co. designed to produce hydrogen and oxygen from moon water; and an algae-growing experiment provided by Malaysia-based Euglena Co. (Algae could be an efficient food source for lunar settlers someday.) The other two payloads are a commemorative plate based on the "Charter of the Universal Century" from the Japanese sci-fi franchise Gundam and a tiny rover named Tenacious, which was built by ispace's Luxembourg-based subsidiary. Tenacious was designed to roll down onto the surface and collect a small amount of moon dirt, under a contract that ispace signed with NASA back in 2020. The rover carried a payload of its own — "Moonhouse," a tiny replica of a red-and-white Swedish house designed by artist Mikael Gensberg. The rover was supposed to lower the Moonhouse off its front bumper onto the lunar dirt, establishing a colorful artistic homestead in the stark gray landscape. None of that will come to pass, however, now that ispace has confirmed Resilience slammed into the lunar surfance instead of making a delicate four-point "soft landing." Related stories: — What's flying to the moon on ispace's Resilience lunar lander? — Japan's Resilience moon lander aces lunar flyby ahead of historic touchdown try (photo) — Japan's Resilience moon lander arrives in lunar orbit ahead of June 5 touchdown Despite the failed Resilience landing, ispace has big lunar goals. The company plans to launch two moon missions in 2027, Mission 3 and Mission 4, that will use a larger, more capable lander named Apex 1.0. That lander will weigh 2 tons, much larger than Resilience. "We know it's not going to be easy," ispace director and CFO Jumpei Nozaki said during the press conference. "But it's hard. It has some meaning and significance of trying." Nozaki said he and ispace felt extremely sorry to have disappointed the company's 80,000 supporters and stockholders, and were determined to learn from the experimence in the designs fo Mission 3 and Mission 4. Hakamada, when asked by a reporter if he or the team had cried after the failed landing, said it wasn't a time for crying. "Right now, we don't know the cause, so I can't get emotional and cry," he said. "I don't think that's a good idea. The most important thing is to find out the cause for this second failure." Editor's note: This story, originally posted at 5 p.m. ET, was updated at 9:30 p.m ET with new details from ispace's post landing attempt press conference. Editor-in-Chief Tariq Malik contributed to this report.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store