logo
Black holes could work as natural particle colliders to hunt for dark matter, scientists say

Black holes could work as natural particle colliders to hunt for dark matter, scientists say

Yahoo3 days ago

When you buy through links on our articles, Future and its syndication partners may earn a commission.
To unlock the secrets of dark matter, scientists could turn to supermassive black holes and their ability to act as natural superpowered particle colliders. That's according to new research that found conditions around black holes are more violent than previously believed.
Currently, the most powerful particle accelerator on Earth is the Large Hadron Collider (LHC), but since it was used to discover the Higgs Boson in 2012, it has failed to deliver evidence of physics beyond the so-called "standard model of particle physics," including the particles that comprise dark matter.
That has led scientists to propose and plan even larger and more powerful particle colliders to explore this as-yet undiscovered country of physics. However, these particle accelerators are prohibitively expensive and time-consuming to build. Fortunately, the cosmos offers natural particle accelerators in the form of the extreme environments around supermassive black holes. We just need a little ingenuity to exploit them.
"One of the great hopes for particle colliders like the LHC is that it will generate dark matter particles, but we haven't seen any evidence yet," Joseph Silk, study team member and a researcher at Johns Hopkins University, said in a statement. "That's why there are discussions underway to build a much more powerful version, a next-generation supercollider. But as we invest $30 billion and wait 40 years to build this supercollider, nature may provide a glimpse of the future in supermassive black holes."
Dark matter is the mysterious stuff that seems to account for around 85% of all matter in the cosmos. That means the matter we understand — everything we see around us that's composed of atoms made of electrons, protons and neutrons — accounts for just 15% of stuff in the universe.Dark matter remains frustratingly elusive because it doesn't interact with light, making it effectively invisible. This is why we know it can't be made of standard atoms because these particles do interact with light. That has spurred the search for new particles that could comprise dark matter, with a great deal of this effort conducted using particle accelerators like the LHC.
Human-made particle accelerators like the LHC allow scientists to probe the fundamental aspects of nature by slamming together particles like protons at near-light speeds. This creates flashes of energy and showers of short-lived particles. Within these showers, scientists hunt for hitherto undiscovered particles.
Test particles like protons are accelerated and guided toward each other within the LHC and other "atom smashers" using incredibly strong magnets, but supermassive black holes could mimic this process using gravity and their own spins.
Supermassive black holes with masses millions, or billions, of times that of the sun sitting at the hearts of galaxies are often surrounded by material in flattened clouds called "accretion disks." As these black holes spin at high speeds, some of this material is channeled to their poles, from where it is blasted out as near-light-speed jets of plasma.
This phenomenon could generate effects similar to those seen in particle accelerators here on Earth.
"If supermassive black holes can generate these particles by high-energy proton collisions, then we might get a signal on Earth, some really high-energy particle passing rapidly through our detectors," Silk said. "That would be the evidence for a novel particle collider within the most mysterious objects in the universe, attaining energies that would be unattainable in any terrestrial accelerator.
"We'd see something with a strange signature that conceivably provides evidence for dark matter, which is a bit more of a leap, but it's possible.'The key to Silk and colleagues' recipe of supermassive black holes as supercolliders hinges on their discovery that gas flows near black holes can sap energy from the spin of that black hole. This results in the conditions in the gas becoming far more violent than expected.
Thus, around spinning supermassive black holes, there should be a wealth of high-speed collisions between particles similar to those created in the LHC here on Earth."Some particles from these collisions go down the throat of the black hole and disappear forever," Silk said. "But because of their energy and momentum, some also come out, and it's those that come out which are accelerated to unprecedentedly high energies."It's very hard to say what the limit is, but they certainly are up to the energy of the newest supercollider that we plan to build, so they could definitely give us complementary results," Silk said.
Related Stories:
— Black hole announces itself to astronomers by violently ripping apart a star
— Massive star's gory 'death by black hole' is the biggest and brightest event of its kind
— Star escapes ravenous supermassive black hole, leaving behind its stellar partner
Of course, catching these high-energy particles from supermassive supercolliders many light-years away will be tricky even if the team's theory is correct. Key to this detection could be observatories already tracking supernovas, black hole eruptions and other high-energy cosmic events."The difference between a supercollider and a black hole is that black holes are far away," Silk concluded. "But nevertheless, these particles will get to us."
The team's research was published on Tuesday (June 3) in the journal Physical Review Letters.

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

A 'Strawberry Moon' is coming to June's skies — and it holds a special record for 2025
A 'Strawberry Moon' is coming to June's skies — and it holds a special record for 2025

Yahoo

time11 minutes ago

  • Yahoo

A 'Strawberry Moon' is coming to June's skies — and it holds a special record for 2025

When you buy through links on our articles, Future and its syndication partners may earn a commission. Stargazers, get ready for some low-hanging fruit: The full Strawberry Moon is about to rise! In addition to being the final full moon of spring in the Northern Hemisphere, June's Strawberry Moon will be the lowest full moon of the year as seen from north of the equator, as well as one of the farthest from the sun. The moon will become full at 3:45 a.m. EDT Wednesday (June 11), but because that's so early in the day, the best time to see it will be Tuesday (June 10) evening, when it rises during dusk. As you watch the moon appear, look to its upper right to spot Antares, a bright star 550 light-years away, in the constellation Scorpius. June's full moon is always one of the lowest-hanging of the year, as seen from the Northern Hemisphere. That's because a full moon is, by definition, opposite the sun, so it mirrors our star's position in the sky. Because the summer solstice occurs on the night of June 20 (or June 21 GMT), when the sun is as high in the sky as it can get, the closest full moon is the lowest of the year. That means it will rise during dusk in the southeastern sky; drift across the southern sky, never getting too far above the southern horizon; and set in the southwest at dawn. RELATED STORIES —The 10 best stargazing events of 2025 —Best telescopes 2025: Explore planets, galaxies and beyond —Best binoculars for stargazing 2025: Take a walk through space The Strawberry Moon is one of the farthest full moons from the sun simply because Earth's orbit of the sun is slightly elliptical. That means there's a closest point and a farthest point in its orbit. The farthest point, called aphelion, occurs on July 3 this year. Because a full moon is opposite the sun, this is when the moon is at its farthest from the sun all year. June's full moon will be approximately 94,600 miles (152,200 kilometers) from the sun. The Strawberry Moon is named for the wild strawberries that ripen in some areas of the Northern Hemisphere this month, according to Other Native American names for this month's full moon include the Berries Ripen Moon, Green Corn Moon, Hot Moon and Blooming Moon. English names include the Flower Moon, Planting Moon and Mead Moon, while some Celtic names for it are the Horse Moon, Dyan Moon and Rose Moon.

The sun: Facts about the bright star at the center of the solar system
The sun: Facts about the bright star at the center of the solar system

Yahoo

time6 hours ago

  • Yahoo

The sun: Facts about the bright star at the center of the solar system

When you buy through links on our articles, Future and its syndication partners may earn a commission. Quick facts about the sun How big it is: 865,000 miles (1.392 million kilometers) across How far away it is: 93 million miles (150 million km) What type of star it is: A yellow dwarf star The sun is the star at the center of our solar system. It's the largest, brightest and most massive object in the solar system, and it provides the light and heat that life on Earth depends on. Powered by a process called nuclear fusion, the sun can get hotter than 27 million degrees Fahrenheit (15 million degrees Celsius). The sun has been around for over 4 billion years, but one day, it will run out of fuel. Read on to learn more about what our local star is made of, how it formed and what will happen when it dies. Over 1 million Earths could fit inside the sun. The sun may look yellow from Earth, but it actually releases every color of light, meaning its true color is white. The sun is unique in that it's the only star in our solar system. Up to 85% of stars have at least one companion star. The sun contains over 99% of the mass of our entire solar system. Like Earth, the sun also rotates on its axis. Each rotation takes about 27 Earth days. The sun is a ball of gas and plasma made mostly of hydrogen. The sun uses these vast stores of hydrogen to generate the heat and light that sustain our planet. It does this through a process called nuclear fusion, in which two hydrogen atoms combine to create a different element, helium. The sun is about three-quarters hydrogen and one-quarter helium, with tiny amounts of metals. The larger a star is, the more rapidly it burns through its hydrogen. Some of the largest known stars — such as those with masses 40 times that of the sun — will live just 1 million years. By contrast, the sun will have a lifetime of around 10 billion years. Different parts of the sun reach different temperatures. The sun's core gets as hot as 27 million F (15 million C). The part of the sun we can see from Earth is called the photosphere, which is the "surface" of the huge ball of plasma. The temperature of the photosphere is about 9,900 F (5,500 C). Above the photosphere is the loose outer atmosphere of the sun, known as the corona. We can't see the corona from Earth under ordinary conditions, though it can be photographed during a total solar eclipse. The sun formed around 4.5 billion years ago. At that time, the area of the Milky Way galaxy that would become the solar system was a dense cloud of gas — the leftovers of an earlier generation of stars. The densest region of this cloud collapsed and created a seed, called a protostar, that would become the sun. As this young protostar grew, planets, moons and asteroids formed from the remaining raw material, and then began circling around the growing sun as they were sucked into orbit by the star's powerful gravity. At the heart of the sun, this same force sparked nuclear fusion. The heat and light from this nuclear reaction allowed life on Earth to evolve and prosper. However, this reaction will eventually lead to the sun's death when it runs out of nuclear fuel. The sun is around halfway through its lifetime. Our star is locked in a constant battle as outward pressure from nuclear fusion fights the inward pull of gravity. When the sun runs out of hydrogen in about 5 billion years, the inward force of gravity will win. The center of the sun will collapse, compressing into a dense core. Helium will start fusing into even denser elements, like carbon, nitrogen and oxygen. While this happens, the heat generated by the fusing of these elements will push the sun's outer shell to swell. This will be bad news for the inner planets of the solar system — including Earth. As the sun becomes a type of star called a red giant, its outer shell will expand to the orbit of Mars, gobbling up Mercury, Venus, Earth and Mars. But the red-giant phase is not when the sun will die. The outer layers that swell during the red-giant phase will become a shell of gas called a surrounding planetary nebula. This shell will be shed after approximately 1 billion years. This will expose the star's smoldering core, which, by this point, will be a dense ball called a white dwarf. As a white dwarf, the sun will dim. The material from the planetary nebula will spread out into the galaxy and form the building blocks of the next generation of stars and planets. Image 1 of 5 Space agencies have launched many spacecraft that help us observe and gather data about the sun. Pictured here is an artist's concept of the sun being observed by NASA's Parker Solar Probe. Image 2 of 5 The red giant star Camelopardalis. The sun will eventually become a red giant, and as it expands, it will engulf its nearest planets, including Earth. Image 3 of 5 Sunspots are darker, cooler areas that temporarily appear on the sun. They're caused by changes in the sun's magnetic field. Image 4 of 5 Solar storms happen when the sun releases flares of energy and particles. Image 5 of 5 Auroras on Earth happen when charged particles from the sun interact with our planet's atmosphere. Is Earth getting closer to the sun, or farther away? Where on Earth does the sun rise first? What color is the sun?

Catch Jupiter and Mercury side by side in the evening sky this week
Catch Jupiter and Mercury side by side in the evening sky this week

Yahoo

time6 hours ago

  • Yahoo

Catch Jupiter and Mercury side by side in the evening sky this week

When you buy through links on our articles, Future and its syndication partners may earn a commission. The nights surrounding June 7 will see Jupiter and Mercury crowd together close to the horizon in the northwestern sky. Stargazers in the U.S. will need a clear horizon to spot the planetary duo hanging less than 10 degrees (about a fist's width at arm's length) above the western horizon when the sun sets on June 6, with Jupiter positioned to the upper left of Mercury. The planets will only be visible for around 45 minutes after sunset, at which time they will follow our star below the horizon. The following evenings will see fleet-footed Mercury draw level with Jupiter, before rising above and away from the gas giant in the night sky as a result of the smaller world's tight orbit around the sun. On June 7, the planets will pass a little over two degrees from each other - close enough to fit comfortably inside the field of view of a pair of 10x50 binoculars. Ensure that the sun has set entirely below the horizon before you point any binoculars or telescopic gear in its direction. Side by side in the night sky, the two points of light appear similar in nature, belying the extreme differences of the solar system bodies they represent. Jupiter is a gas giant and the largest planet in our solar system, capable of fitting the smallest planet - rocky Mercury - within its expanse many thousands of times over. Want to find the planets of our solar system for yourself? The Celestron NexStar 4SE is ideal for beginners wanting quality, reliable and quick views of celestial objects. For a more in-depth look at our Celestron NexStar 4SE review. Their orbits are similarly divergent. It takes Jupiter 12 Earth years to complete a single lap of our star while travelling at an average orbital distance of 484 million miles (778 million kilometers). Counterintuitively, the gas giant has the shortest day of any planet in the solar system, taking a mere 9.9 hours to spin on its axis, according to NASA. Mercury, on the other hand, is separated on average by 29 million miles (47 million kilometers) from our star and completes a circuit of the sun every 88 Earth days — much shorter than the 176 Earth days that it takes for the tortured world to complete a full day-night cycle. Night sky enthusiasts hoping to explore the planets of our solar system for themselves should check out our guides to the best binocular and telescope deals. Those new to the night sky should also read our guide detailing the top smartphone stargazing apps available in 2025. Editor's Note: If you capture a picture of Jupiter and Mercury and want to share it with readers, then please send it along with your comments, name and the location of the shoot to spacephotos@

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store