The universe may not have originated with the Big Bang, new study reveals
THE UNIVERSE MAY not have started with the Big Bang, but instead 'bounced' out of a massive black hole formed within a larger 'parent' universe, according to a new scientific paper.
Professor Enrique Gaztanaga, from the University of Portsmouth's Institute of Cosmology and Gravitation, said that the current Big Bang theory was problematic as the laws of physics 'broke down' when used to explain it.
His new explanation, published in the journal Physical Review D, suggests that the Universe was formed as a result of a gravitational collapse in a larger universe which generated a massive black hole leading to a rebound or 'bounce' causing our universe to emerge.
Professor Gaztanaga said: 'The Big Bang model begins with a point of infinite density where the laws of physics break down.
'This is a deep theoretical problem that suggests the beginning of the Universe is not fully understood.
'We've questioned that model and tackled questions from a different angle – by looking inward instead of outward.
'Instead of starting with an expanding universe and asking how it began, we considered what happens when an over-density of matter collapses under gravity.'
Advertisement
Prof Gaztanaga explained that the theory developed by his team of researchers worked within the principles of quantum mechanics and the model could be tested scientifically.
He said: 'We've shown that gravitational collapse does not have to end in a singularity and found that a collapsing cloud of matter can reach a high-density state and then bounce, rebounding outward into a new expanding phase.
'Crucially, this bounce occurs entirely within the framework of general relativity, combined with the basic principles of quantum mechanics. What emerges on the other side of the bounce is a universe remarkably like our own.
'Even more surprisingly, the rebound naturally produces a phase of accelerated expansion driven not by a hypothetical field but by the physics of the bounce itself.
'We now have a fully worked-out solution that shows the bounce is not only possible – it's inevitable under the right conditions.
'One of the strengths of this model is that it makes predictions that can be thoroughly tested. And what's more, this new model has also revealed that the Universe is slightly curved, like the surface of the Earth.'
He added: 'Furthermore, it could also shed new light on other deep mysteries in our understanding of the early universe, such as the origin of supermassive black holes, the nature of dark matter, or the formation and evolution of galaxies.'
Professor Gaztanaga, who is the science co-ordinator for the ARRAKIHS ESA space mission, said that the four wide-angle telescopes on the satellite could help confirm the theory through its ability to detect ultra-low surface brightness structures in the outskirts of galaxies, which he explained were essential for studying how galaxies grow and evolve.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles

The Journal
3 days ago
- The Journal
The universe may not have originated with the Big Bang, new study reveals
THE UNIVERSE MAY not have started with the Big Bang, but instead 'bounced' out of a massive black hole formed within a larger 'parent' universe, according to a new scientific paper. Professor Enrique Gaztanaga, from the University of Portsmouth's Institute of Cosmology and Gravitation, said that the current Big Bang theory was problematic as the laws of physics 'broke down' when used to explain it. His new explanation, published in the journal Physical Review D, suggests that the Universe was formed as a result of a gravitational collapse in a larger universe which generated a massive black hole leading to a rebound or 'bounce' causing our universe to emerge. Professor Gaztanaga said: 'The Big Bang model begins with a point of infinite density where the laws of physics break down. 'This is a deep theoretical problem that suggests the beginning of the Universe is not fully understood. 'We've questioned that model and tackled questions from a different angle – by looking inward instead of outward. 'Instead of starting with an expanding universe and asking how it began, we considered what happens when an over-density of matter collapses under gravity.' Advertisement Prof Gaztanaga explained that the theory developed by his team of researchers worked within the principles of quantum mechanics and the model could be tested scientifically. He said: 'We've shown that gravitational collapse does not have to end in a singularity and found that a collapsing cloud of matter can reach a high-density state and then bounce, rebounding outward into a new expanding phase. 'Crucially, this bounce occurs entirely within the framework of general relativity, combined with the basic principles of quantum mechanics. What emerges on the other side of the bounce is a universe remarkably like our own. 'Even more surprisingly, the rebound naturally produces a phase of accelerated expansion driven not by a hypothetical field but by the physics of the bounce itself. 'We now have a fully worked-out solution that shows the bounce is not only possible – it's inevitable under the right conditions. 'One of the strengths of this model is that it makes predictions that can be thoroughly tested. And what's more, this new model has also revealed that the Universe is slightly curved, like the surface of the Earth.' He added: 'Furthermore, it could also shed new light on other deep mysteries in our understanding of the early universe, such as the origin of supermassive black holes, the nature of dark matter, or the formation and evolution of galaxies.' Professor Gaztanaga, who is the science co-ordinator for the ARRAKIHS ESA space mission, said that the four wide-angle telescopes on the satellite could help confirm the theory through its ability to detect ultra-low surface brightness structures in the outskirts of galaxies, which he explained were essential for studying how galaxies grow and evolve.


Irish Independent
05-06-2025
- Irish Independent
New theory disputes ‘Big Bang' caused the creation of universe and proposes black hole collapse
©UK Independent Today at 21:30 The universe may not have begun with the Big Bang but from the collapse of a massive black hole, a new theory suggests. Current observations of our universe appear to support the Big Bang and cosmic inflation theories, which say that the early universe sprang into existence from a singular moment in space and time and rapidly blew up in size. The theories, however, leave many fundamental questions unanswered.


RTÉ News
23-05-2025
- RTÉ News
Astronomers spot massive galaxy shaped like the Milky Way
Astronomers have observed a galaxy dating to an earlier epoch in the universe's history that surprisingly is shaped much like the Milky Way - a spiral structure with a straight bar of stars and gas running through its centre - but far more massive, offering new insight into galactic formation. The distant galaxy, called J0107a, was observed as it appeared 11.1 billion years ago, when the universe was about a fifth of its current age. The researchers used data from the Chile-based Atacama Large Millimeter/submillimeter Array (ALMA) and NASA's James Webb Space Telescope to study the galaxy. They determined that the galaxy's mass, including its stars and gas, was more than 10 times greater than that of the Milky Way, and it was forming stars at an annual rate approximately 300 times greater. J0107a was more compact than the Milky Way, however. "The galaxy is a monster galaxy with a high star formation rate and plenty of gas, much more than present-day galaxies," said astronomer Shuo Huang of the National Astronomical Observatory of Japan, lead author of the study published this week in the journal Nature. "This discovery," said study co-author Toshiki Saito, an astronomer at Shizuoka University in Japan, "raises the important question: How did such a massive galaxy form in such an early universe?" While a few galaxies that are undergoing star formation at a similar rate to J0107a exist in today's universe, almost all of them are ones that are in the process of a galactic merger or collision. There was no sign of such circumstances involving this galaxy. J0107a and the Milky Way have some commonalities. "They are similarly huge and possess a similar barred structure. However, the Milky Way had plenty of time to form its huge structures, while J0107a didn't," Saito said. In the first few billion years after the Big Bang event 13.8 billion years ago that initiated the universe, galaxies were turbulent entities and were much richer in gas than those existing currently - factors that fostered extreme bursts of star formation. While galaxies with highly organised structures like the barred spiral shape of the Milky Way are common now, that was not the case 11.1 billion years ago. "Compared to other monster galaxies in the distant universe (dating to an earlier cosmic epoch) whose shapes are usually disturbed or irregular, it is unexpected that J0107a looks very similar to present-day spiral galaxies," Huang said. "Theories about the formation of present-day galactic structures may need to be revised," Huang added. The Webb telescope, as it peers across vast distances back to the early universe, has found that galaxies with a spiral shape appeared much earlier than previously known. J0107a is now one of the earliest-known examples of a barred spiral galaxy. About two thirds of spiral galaxies observed in the universe today possess a bar structure. The bar is thought to serve as a form of stellar nursery, bringing gas inward from the galaxy's spiral arms. Some of the gas forms what are called molecular clouds. Gravity causes the contraction of these clouds, with small centres taking shape that heat up and become new stars. The bar that is part of J0107a measures about 50,000 light years in length, Huang said. A light-year is the distance light travels in a year, 5.9 trillion miles (9.5 trillion km). The Webb telescope "has been studying the morphology of early massive galaxies intensely recently. However, their dynamics are still poorly understood," Saito said.