logo
Aggressive tumor found on 150-million-year-old leg bone of young Jurassic giant

Aggressive tumor found on 150-million-year-old leg bone of young Jurassic giant

Miami Herald30-04-2025

New evidence adds to a 2020 finding that dinosaurs had bone tumors and other conditions seen in modern-day vertebrates.
In 2014, researchers discovered a 150-million-year-old ulna of a mamenchisaurid in northeastern Thailand with unusual characteristics. They've now honed in on some possible explanations, according to an April 24 study published in the Journal of Anatomy.
The forelimb, with a 'bulge' of abnormal bone growth near the shaft, belonged to a 'subadult' that had completed its most rapid growth phase but was still growing, according to researchers.
Diagnostic imaging determined that in life, the young mamenchisaurid suffered from an osteogenic tumor, or a tumor that originates in bone-forming cells.
This is the first report of an osteogenic tumor in an early Eusauropod, the taxonomic group to which mamenchisauridae belong, according to the study.
Researchers said based on the tumor's size, location and connection to muscles that controlled the movement of the dinosaur's toes and elbow, it is 'highly likely' the young dinosaur experienced 'severe discomfort' and reduced function of its forelimb.
Researchers could not make a definitive diagnosis, including whether the tumor was malignant or benign, because it shared characteristics with many other tumors, including osteoblastoma and osteosarcoma, according to the study.
The tumor had aggressive features, including evidence of reactive bone growth, and non-aggressive characteristics, such as well-defined borders, according to researchers.
The ulna was discovered in Kalasin province in northeastern Thailand.
The research team includes Siripat Kaikaew, Suravech Suteethorn and Anusuya Chinsamy.
First malignant dinosaur bone tumor discovered in 2020
Scientists only recently confirmed that dinosaurs had malignant bone cancer after finding osteosarcoma — a cancer associated with rapid bone development — in the leg bone of a Centrosaurus apertus, according to a 2020 study published in the journal The Lancet Oncology.
Researchers said dinosaurs likely had many of the same cancers seen in vertebrates today, particularly those impacting the bones, given many dinosaur species' enormous size and accelerated growth rates, NPR reported.
More about mamenchisauridae
Mamenchisauridae, which roamed the Earth during the late Jurassic period alongside the stegosaurus and the brachiosaurus, were sauropods — the largest dinosaurs to ever exist.
According to researchers, mamenchisauridae 'have the distinction of being the sauropods with the longest necks.'
A mamenchisauridae species discovered in China in 2023 has a neck nearly 50 feet long.

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

US government's vaccine website defaced with AI-generated content
US government's vaccine website defaced with AI-generated content

TechCrunch

time21 hours ago

  • TechCrunch

US government's vaccine website defaced with AI-generated content

In Brief A U.S. government website designed to inform the public about vaccines has been defaced and now hosts apparently AI-generated spam. The domain, which belongs to the U.S. Department of Health and Human Services (HHS), appears to have been hosting the same kind of content — mostly gay-themed and LGBTQ+ posts — since at least May 12, according to an archived version of the site. It's unclear who is responsible for it, or what is the purpose of this defacement other than pushing AI-generated slop spam. Websites hosted on official U.S. government domains have been hijacked in the past to host scam ads and hacking services. 404 Media reported on Wednesday that the vaccines HHS website is part of a wider spam operation that includes websites owned by NPR, Nvidia, and Stanford University, all of which redirect to 'a nonsense SEO spam page,' as 404 Media journalist Sam Cole called it, hosted on HHS did not respond to TechCrunch's request for comment.

Ancient T. rex ancestor discovered: Khankhuuluu, ‘prince of dragons'
Ancient T. rex ancestor discovered: Khankhuuluu, ‘prince of dragons'

Washington Post

timea day ago

  • Washington Post

Ancient T. rex ancestor discovered: Khankhuuluu, ‘prince of dragons'

A new species of early tyrannosaur, dubbed the 'prince of dragons,' has been discovered lurking in a collection of fossils first excavated in Mongolia in the early 1970s, scientists said Wednesday in the journal Nature. Khankhuuluu mongoliensis — its scientific name — is an evolutionary ancestor of the most famous tyrannosaur, the 'tyrant lizard king,' T. rex. With their bone-crushing bites and spindly little arms, large tyrannosaurs (scientifically known as 'eutyrannosaurians') are the celebrities of the dinosaur world. But they started off as small-bodied tyrannosauroids some 150 million years ago in the Jurassic period. It wasn't until the late Cretaceous that they began evolving into the giants that ignite people's imaginations. Their precise evolutionary origins, however, have long been murky. A critical swath of the family tree is blank. Khankhuuluu, known from two partial skeletons in fossil collections at the Institute of Paleontology in Mongolia, helps fill in this gap — a transitional 86 million-year-old species that represents the closest known ancestor to the famed late tyrannosaurs. Previously, it had been described as an alectrosaurus, another early tyrannosaur. Asked for a modern-day comparison, University of Calgary graduate student Jared Voris, who led the work, said to imagine a large, predatory horse. 'What makes them so important is their age,' said Stephen Brusatte, a paleontologist at the University of Edinburgh who was not involved in the study. 'They are about 86 million years old, a good 20 million years older than T. rex. It has been a frustrating gap in the record.' Voris was on a research trip in Mongolia in 2023 when he sent a text halfway across the world to his adviser, Darla Zelenitsky, an associate professor of paleontology. He told her that he thought some of the fossils he had examined in a museum collection were actually a new species. Those specimens had been classified for decades as alectrosaurus, 'an enigmatic and poorly represented tyrannosauroid species,' Zelenitsky and Voris wrote in their study. What leaped out to Voris initially was that the snout bone was hollow, a clear sign that this was an early ancestor of the tyrannosaur family. It was the first of what would come to be dozens of features that suggested this creature was something new. Zelenitsky, a paleontologist at the University of Calgary, said she was excited but cautioned Voris to take his time. Some bones were sent to Japan, where the research team was able to conduct CT scans to study them in greater detail. The scientists also traveled to the American Museum of Natural History in New York to study alectrosaurus fossils to make sure the animals they were researching were distinct. 'There's no doubt this is a new species,' Zelenitsky said. 'There's also no doubt that it's the ancestor to these large apex predator tyrannosaurs.' The new study reveals an intermediate form — a slender, relatively flat-snouted creature. Other tyrannosaur experts said it was good to see these specimens reexamined with modern techniques and understanding. Thomas R. Holtz Jr., a vertebrate paleontologist at the University of Maryland, recalled that in the 1980s, the find in Mongolia was relatively famous within the small community of tyrannosaur specialists. He was the envy of colleagues back then, because he had been able to hunt down a blurry microfiche of the paper, published in an obscure Mongolian geologic journal in the 1970s. 'It helps fill in a gap in time and in the evolutionary tree,' Holtz said. Khankhuuluu is part of a gold rush in discoveries that are filling in more chapters of tyrannosaur evolution. Over the past 15 years, there has been an explosion in discoveries of tyrannosaur species, said Joseph Sertich, a vertebrate paleontologist with the Smithsonian Tropical Research Institute. Sometimes, new species come to light by dusting off old fossils and finding ones that were misclassified in museum collections, as in the new study. Other times, scientists dig up new bones. Voris and Zelenitsky paint a picture of species evolution and migration as tyrannosaurs dispersed between Asia and North America over millions of years. Khankhuuluu, or another closely related species, left Asia and moved into North America, giving rise to tyrannosaurs there around 85 million years ago. Several million years later, a migration back to Asia resulted in two new branches of the tyrannosaur family tree: the giants on one branch and the 'Pinocchio rexes' — smaller dinosaurs with long, slender snouts — on the other. And at the very end of tyrannosaur evolution, one of the giants migrated back to North America, giving rise to T. rex. Sertich drew the analogy to big cats, where many species can live alongside one another — leopards, lions or tigers coexisting as predators in the ecosystem. 'The patterns of evolution we are uncovering are revealing a complex story of evolution that goes far beyond tyrant dinosaurs and has bearing on the origins of the modern ecosystems of the Northern Hemisphere,' Sertich said. 'Ultimately, this paper is exploring the ancient connections between North America and Asia, two continents that have shared species, including humans, for the past 90 million years.'

Paleontologists dig through fossilized dino guts to see what's inside
Paleontologists dig through fossilized dino guts to see what's inside

Yahoo

time3 days ago

  • Yahoo

Paleontologists dig through fossilized dino guts to see what's inside

Nothing quite fits the moniker 'gentle giant' more than sauropods. These gargantuan dinosaurs could reach up to 123 feet long and weigh up to seven tons. Sauropods have long been believed to be herbivores, munching on leaves during the Jurassic and Cretaceous periods. Now, for the first time, a team of paleontologists have studied the abdomen of a sauropod with its gut contents still intact that lived roughly 94 to 101 million years ago. The finding confirms that they were in fact herbivores–and did not really chew their food. Instead, sauropods relied on gut microbes to break down its food. The findings are detailed in a study published June 9 in the Cell Press journal Current Biology. 'No genuine sauropod gut contents had ever been found anywhere before, despite sauropods being known from fossils found on every continent and despite the group being known to span at least 130 million years of time,' Stephen Poropat, a study co-author and paleontologist at Curtin University in Australia, said in a statement. 'This finding confirms several hypotheses about the sauropod diet that had been made based on studies of their anatomy and comparisons with modern-day animals.' Fossilized dinosaur bones can only tell us so much about these extinct animals. Paleontologists can use trackways and footprints to learn about their movement and preserved gut contents called cololites to put together what their diets may have looked like. Understanding the diet is critical for understanding their biology and the role they played in ancient ecosystems, but very few dinosaur fossils have been found with cololites. These are gut contents that have yet to become poop–or coprolites. In particular, sauropod cololites have remained elusive. With their gargantuan sizes, these dinosaurs may have been the most ecologically impactful terrestrial herbivores on the planet during the Jurassic and Cretaceous periods. With this lack of direct dietary evidence, the specifics of sauropod herbivory—including the plants that they ate—have mostly been theorized based largely on tooth wear, jaw shape and size, and neck length. But that changed in the summer of 2017. Staff and volunteers at the Australian Age of Dinosaurs Museum of Natural History were excavating a relatively complete subadult sauropod skeleton. This particular Diamantinasaurus matildae specimen lived during the mid-Cretaceous period and was uncovered in the Winton Formation of Queensland, Australia. The team noticed an unusual, fractured rock layer that appeared to contain the sauropod's cololite with well-preserved plant fossils. The team analyzed the plant specimens within the cololite and found that sauropods likely only engaged in minimal oral processing of their food. Instead of chewing, their gut microbiota would ferment the plants to digest it. The cololite had a wide variety of plants, including foliage from conifers (cone-bearing seed plants), seed-fern fruiting bodies (plant structures that hold seeds), and leaves from angiosperms (flowering plants). From this, it looks like Diamantinasaurus was an indiscriminate, bulk feeder. 'The plants within show evidence of having been severed, possibly bitten, but have not been chewed, supporting the hypothesis of bulk feeding in sauropods,' said Poropat. The team also found chemical biomarkers of both angiosperms and gymnosperms—a group of woody, seed-producing plants that include conifers. [ Related: The mystery of why some dinosaurs got so enormous. ] 'This implies that at least some sauropods were not selective feeders, instead eating whatever plants they could reach and safely process,' Poropat said. 'These findings largely corroborate past ideas regarding the enormous influence that sauropods must have had on ecosystems worldwide during the Mesozoic Era.' Although it was not unexpected that the gut contents provided support for sauropod herbivory and bulk feeding, Poropat was surprised to find angiosperms in the dinosaur's gut. 'Angiosperms became approximately as diverse as conifers in Australia around 100 to 95 million years ago, when this sauropod was alive,' he says. 'This suggests that sauropods had successfully adapted to eat flowering plants within 40 million years of the first evidence of the presence of these plants in the fossil record.' Based on these findings, the team suggests that Diamantinasaurus likely fed on both low- and high-growing plants, at least before adulthood. As hatchlings, sauropods would have only been able to access food that was close to the ground. As they grew (and grew and grew), their viable food options also expanded. Additionally, the prevalence of small shoots, bracts, and seed pods in the cololite implies that subadult Diamantinasaurus likely targeted new growth portions of conifers and seed ferns. These portions of the plant are easier to digest. According to the authors, the strategy of indiscriminate bulk feeding likely served sauropods well for 130 million years. However, as with most studies, there are some important caveats and limitations. 'The primary limitation of this study is that the sauropod gut contents we describe constitute a single data point,' Poropat explained. 'These gut contents only tell us about the last meal or several meals of a single subadult sauropod individual.' We also don't know how the seasons affected diet, or if the plants preserved in this specific sauropod represent a diet typical of a healthy sauropod or a more stressed one. The specimen is also a subabult, which could mean that younger sauropods had this more than adults did. Despite the limitations, it offers an exciting look inside the stomachs of some of the largest creatures to ever live.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store