logo
Scientists produce complex map of mouse's brain that could unravel mystery of how ours work

Scientists produce complex map of mouse's brain that could unravel mystery of how ours work

Yahoo12-04-2025

Thanks to a mouse watching clips from 'The Matrix,' scientists have created the largest functional map of a brain to date – a diagram of the wiring connecting 84,000 neurons as they fire off messages.
Using a piece of that mouse's brain about the size of a poppy seed, the researchers identified those neurons and traced how they communicated via branch-like fibres through a surprising 500 million junctions called synapses.
The massive dataset, published on Wednesday by the journal Nature, marks a step toward unraveling the mystery of how our brains work.
Related
Scientists shed light on the many ways women's brains change during pregnancy
The data, assembled in a 3D reconstruction colored to delineate different brain circuitry, is open to scientists worldwide for additional research – and for the simply curious to take a peek.
"It definitely inspires a sense of awe, just like looking at pictures of the galaxies," said Forrest Collman of the Allen Institute for Brain Science in the United States, one of the project's leading researchers.
"You get a sense of how complicated you are. We're looking at one tiny part... of a mouse's brain and the beauty and complexity that you can see in these actual neurons and the hundreds of millions of connections between them".
How we think, feel, see, talk, and move are due to neurons, or nerve cells, in the brain – how they're activated and send messages to each other.
Scientists have long known those signals move from one neuron along fibres called axons and dendrites, using synapses to jump to the next neuron.
But there's less known about the networks of neurons that perform certain tasks and how disruptions of that wiring could play a role in Alzheimer's, autism, or other disorders.
With the new project, a global team of more than 150 researchers mapped neural connections that Collman compares to tangled pieces of spaghetti winding through part of the mouse brain responsible for vision.
Related
Scientists produce first and largest brain map of a dead fruit fly
The first step: show a mouse video snippets of sci-fi movies, sports, animation, and nature.
A team at Baylor College of Medicine in the US did just that, using a mouse engineered with a gene that makes its neurons glow when they're active.
The researchers used a laser-powered microscope to record how individual cells in the animal's visual cortex lit up as they processed the images flashing by.
Next, scientists at the Allen Institute analysed that small piece of brain tissue, using a special tool to shave it into more than 25,000 layers and take nearly 100 million high-resolution images using electron microscopes. They then painstakingly reassembled the data in 3D.
Finally, scientists from Princeton University in the US used artificial intelligence (AI) to trace all that wiring and "paint each of the individual wires a different colour so that we can identify them individually," Collman said.
They estimated that microscopic wiring, if laid out, would measure more than 5 km.
Related
An experimental brain-computer implant is helping a stroke survivor speak again
Could this kind of mapping help scientists eventually find treatments for brain diseases?
The researchers call it a foundational step, like how the Human Genome Project that provided the first gene mapping eventually led to gene-based treatments.
Mapping a full mouse brain is one next goal.
"The technologies developed by this project will give us our first chance to really identify some kind of abnormal pattern of connectivity that gives rise to a disorder," said Sebastian Seung, Princeton neuroscientist and computer scientist and another of the project's leading researchers.
The work "marks a major leap forwards and offers an invaluable community resource for future discoveries," wrote Harvard neuroscientists Mariela Petkova and Gregor Schuhknecht, who weren't involved in the project.
The huge and publicly shared data "will help to unravel the complex neural networks underlying cognition and behaviour," they added.

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

First evidence of ‘living towers' made of worms discovered in nature
First evidence of ‘living towers' made of worms discovered in nature

CNN

time2 hours ago

  • CNN

First evidence of ‘living towers' made of worms discovered in nature

Nature seems to offer an escape from the hustle and bustle of city life, but the world at your feet may tell another story. Even in the shade of a fruit tree, you could be surrounded by tiny skyscrapers — not made of steel or concrete, but of microscopic worms wriggling and writhing into the shape of long, vertical towers. Even though these miniature architects, called nematodes, are found all over Earth's surface, scientists in Germany recently witnessed their impressive building techniques in nature for the first time. After months of closely inspecting rotten pears and apples in local orchards, researchers from the Max Planck Institute of Animal Behavior and the University of Konstanz were able to spot hundreds of the 1-millimeter-long (0.04-inch) worms climbing onto one another, amassing structures up to 10 times their individual size. Related video Rare video shows 12 sharks co-feed socially To learn more about the mysterious physics of the soft, slimy towers, the study team brought samples of nematodes called Caenorhabditis elegans into a lab and analyzed them. There, the scientists noticed the worms could assemble in a matter of hours, with some reaching out from the twisting mass as exploratory 'arms' sensing the environment and building accordingly. But why the worms formed the structures wasn't immediately clear. The team's findings, published Thursday in the journal Current Biology, show that even the smallest animals can prompt big questions about the evolutionary purpose of social behaviors. 'What we got was more than just some worms standing on top of each other,' said senior study author Serena Ding, a Max Planck research group leader of genes and behavior. 'It's a coordinated superorganism, acting and moving as a whole.' To find out what was motivating the nematodes' building behavior, the study team tested the worms' reactions to being poked, prodded and even visited by a fly — all while stacked in a tower formation. 'We saw that they are very reactive to the presence of a stimulus,' said the study's first author, Daniela Perez, who is a postdoctoral researcher at the Max Planck Institute of Animal Behavior. 'They sense it, and then the tower goes towards this stimulus, attaching itself to our metal pick or a fly buzzing around.' This coordinated reaction suggests the hungry nematodes may be joining together to easily hitch a ride on larger animals such as insects that transport them to (not so) greener pastures with more rotten fruit to feast on, Perez said. 'If you think about it, an animal that is 1 millimeter long cannot just crawl all the way to the next fruit 2 meters (6.6 feet) away. It could easily die on the way there, or be eaten by a predator,' Perez explained. Nematodes are capable of hitchhiking solo too, she added, but arriving to a new area in a group may allow them to continue reproducing. The structures themselves may also serve as a mode of transport, as evidenced by how some worms formed bridges across gaps within the petri dishes to get from one surface to another, Perez noted. 'This discovery is really exciting,' said Orit Peleg, an associate professor of computer science who studies living systems at the University of Colorado Boulder's BioFrontiers Institute. 'It's both establishing the ecological function of creating a tower, and it really opens up the door to do more controlled experimentation to try to understand the perceptual world of these organisms, and how they communicate within a large group.' Peleg was not involved in the study. As the next step, Perez said her team would like to learn whether the formation of these structures is a cooperative or competitive behavior. In other words, are the towering nematodes behaving socially to help each other out, or are their towers more akin to a Black Friday sale stampede? Studying the behaviors of other self-assembling creatures could offer clues to the social norms of nematodes and help answer this question, Ding said. Ants, which assemble to form buoyant rafts to survive floodwaters, are among the few creatures known to team up like nematodes, said David Hu, a professor of mechanical engineering and biology at Georgia Tech. Hu was not involved in the study. 'Ants are incredibly sacrificial for one another, and they do not generally fight within the colony,' Hu said. 'That's because of their genetics. They all come from the same queen, so they are like siblings.' Like ants, nematodes didn't appear to display any obvious role differentiation or hierarchy within the tower structures, Perez said. Each worm from the base to the top of the structure was equally mobile and strong, indicating no competition was at play. However, the lab-cultivated worms were basically clones of one another, so it's not clear whether role differentiation occurs more often in nature, where nematode populations could have more genetic differences, she noted. Additionally, socially cooperative creatures tend to use some form of communication, Peleg said. In the case of ants, it may be their pheromone trails, while honeybees rely on their ritual dance routines and slime molds use their pulsing chemical signals. With nematodes, however, it's still not clear how they might communicate — or if they are communicating at all, Ding said. 'The next steps for (the team) are really just choosing the next questions to ask.' Notably, there has been a lot of interest in studying cooperative animal behaviors among the robotics community, Hu said. It's possible that one day, he added, information about the complex sociality of creatures like nematodes could be used to inform how technology, such as computer servers or drone systems, communicates.

Scientists stunned after witnessing unprecedented cascade triggered by common fishing practice: 'Collective memory loss'
Scientists stunned after witnessing unprecedented cascade triggered by common fishing practice: 'Collective memory loss'

Yahoo

time4 hours ago

  • Yahoo

Scientists stunned after witnessing unprecedented cascade triggered by common fishing practice: 'Collective memory loss'

The world's largest herring population has experienced an unprecedented 800-kilometer (497-mile) shift in its spawning grounds because of fishing practices that target older fish, according to a study in the journal Nature. Norwegian spring spawning herring have traditionally migrated up to 1,300 kilometers (808 miles) southward from northern Norwegian waters to spawn at the west coast, a journey that helps ensure better survival rates for their offspring. However, new research shows these fish have abruptly shifted their spawning grounds northward after heavy fishing pressure targeted older, more experienced fish that typically "teach" migration routes to younger generations. The research team found that when fisheries selectively harvested older herring, it created a "collective memory loss" within the population, disrupting long-established migration patterns. The change occurred when a large cohort of young herring emerged in 2016, when the population of older fish had plummeted by 68%. Without enough elder "guides," these young fish established their own, shorter migration routes that older survivors eventually adopted. This disruption in fish migration doesn't just affect herring. It impacts entire coastal ecosystems and communities that depend on these spawning events. When herring spawn in southern areas, their eggs and hatched larvae spread over larger areas during their northward drift, enriching diverse coastal ecosystems. Local predatory fish, endangered seabird colonies, and even coastal communities benefit from this natural energy distribution pattern along the Norwegian coast. The shift could lead to lower fish production over time, as the northward spawning areas may not provide the same survival advantages for young fish. For you at home, this could eventually mean fewer herring available in grocery stores and higher prices for this nutritious seafood option. The research also raises broader concerns about how current fishing practices might be disrupting important animal behaviors that have evolved over centuries. If fish can't pass down their migration knowledge, we may see similar problems affect other commercial fish species, potentially threatening food security for communities worldwide. Scientists are advocating for "longevity conservation" in fisheries management — namely, policies that protect older fish instead of focusing on overall population numbers. Maintaining a healthy age structure in fish preserves their collective knowledge and cultural behaviors. Do you think America has a plastic waste problem? Definitely Only in some areas Not really I'm not sure Click your choice to see results and speak your mind. Some fisheries are already exploring finer-scale management strategies that protect fish at different life stages and locations, rather than treating entire populations as single units. If you want to help, look for seafood certified by organizations like the Marine Stewardship Council, which promotes sustainable fishing practices. You can also use seafood guides from groups like Seafood Watch to choose fish harvested using methods that minimize ecosystem impacts. Join our free newsletter for good news and useful tips, and don't miss this cool list of easy ways to help yourself while helping the planet.

Xanadu Unveils First On-Chip Error-Resistant Photonic Qubit
Xanadu Unveils First On-Chip Error-Resistant Photonic Qubit

Yahoo

timea day ago

  • Yahoo

Xanadu Unveils First On-Chip Error-Resistant Photonic Qubit

TORONTO, June 4, 2025 /PRNewswire/ - Xanadu has achieved a significant milestone in the development of scalable quantum hardware by generating error-resistant photonic qubits on an integrated chip platform. A foundational result in Xanadu's roadmap, this first-ever demonstration of such qubits on a chip is now published in Nature. This breakthrough builds on Xanadu's recent announcement of the Aurora system, which demonstrated—for the first time—all key components required to build a modular, networked, and scalable photonic quantum computer. With this latest demonstration of robust qubit generation using silicon-based photonic chips, Xanadu further strengthens the scalability pillar of its architecture. The quantum states produced in this experiment, known as GKP states, consist of superpositions of many photons to encode information in an error-resistant manner—an essential requirement for future fault-tolerant quantum computers. These states allow logic operations to be performed using deterministic, room-temperature-compatible techniques, and they are uniquely well-suited for networking across chips using standard fiber connections. This demonstration of generating photonic qubits was enabled by a number of key technological achievements from Xanadu's hardware team. These include the development of photon-number-resolving detectors with detection efficiencies above 99%, the fabrication of customized ultra-low loss silicon nitride waveguides on 300 mm wafer platforms, and the implementation of in-house state-of-the-art optical packaging. "GKP states are, in a sense, the optimal photonic qubit, since they enable logic gates and error correction at room temperature and using relatively straightforward, deterministic operations," says Zachary Vernon, CTO of Hardware at Xanadu. "This demonstration is an important empirical milestone showing our recent successes in loss reduction and performance improvement across chip fabrication, component design, and detector efficiency." The next hurdle towards a utility-scale photonic quantum computer remains clear: further reduction of optical loss will allow for higher quality GKP states suitable for fault-tolerance. With another significant milestone in its hardware roadmap complete, Xanadu remains focused on further optimizing fabrication and photonics packaging processes to alleviate optical loss across its platform. About Xanadu: Xanadu is a Canadian quantum computing company with the mission to build quantum computers that are useful and available to people everywhere. Founded in 2016, Xanadu has become one of the world's leading quantum hardware and software companies. The company also leads the development of PennyLane, an open-source software library for quantum computing and application development. Visit or follow us on X @XanaduAI. View original content: SOURCE Xanadu Quantum Technologies Inc. Error in retrieving data Sign in to access your portfolio Error in retrieving data Error in retrieving data Error in retrieving data Error in retrieving data

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store