logo
Soviet satellite to crash to Earth on Sunday and could hit Wales

Soviet satellite to crash to Earth on Sunday and could hit Wales

Wales Online08-05-2025

Soviet satellite to crash to Earth on Sunday and could hit Wales
The Kosmos-482 has been stranded in orbit since 1972
Artist impression of a satellite burning up as it travels through Earth's atmosphere
An out of control Soviet spacecraft is set to crash into the Earth on Sunday morning - and it could hit the UK. Scientists had estimated the Kosmos-482, a Venus lander stranded in Earth orbit since 1972, was expected to make an uncontrolled reentry between 8-13 May.
However, ESA's Space Debris Office latest prediction Friday sees reentry of the descent craft taking place at 08:12 UK time on Sunday. The exact landing site is unknown, but the potential impact zone covers much of the globe between 52° north and 52° south latitude - which takes in the south of England and parts of Wales.

The probe's robust construction-designed to survive Venus' harsh atmosphere-means some parts, especially the titanium descent capsule, may reach the surface intact. Space agencies are closely monitoring its descent, but most forecasts suggest it will likely fall into the ocean.

Possible re-entry locations lie anywhere along the yellow and green lines
ESA said: "On 10 May, an uncontrolled reentry will take place of the so-called Kosmos-482 descent craft, a Soviet Venera landing capsule that launched 53 years ago. It was meant to land on Venus, but its launcher never escaped Earth's gravity. Now, the descent craft will come down at a point between 52 degrees north and south of the equator.
Article continues below
"As the reentry comes closer, the predictions will become more precise in the updates."
The Kosmos-482 Descent Craft has a titanium shell designed to withstand the extreme accelerations, heat and pressure of a Venus re-entry.
Weighing approximately 500 kilograms and measuring 1 metre in diameter, it may survive and reach the ground almost intact.

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Solar Orbiter offers first glimpse of sun's poles in breakthrough mission
Solar Orbiter offers first glimpse of sun's poles in breakthrough mission

The Independent

timean hour ago

  • The Independent

Solar Orbiter offers first glimpse of sun's poles in breakthrough mission

The first-ever images of the sun 's south pole have been captured by the robotic Solar Orbiter spacecraft. The European Space Agency (ESA) released images on Wednesday using three of Solar Orbiter's onboard instruments. The images, taken in March, show the sun's south pole from a distance of roughly 40 million miles, obtained at a period of maximum solar activity. Images of the north pole are still being transmitted by the spacecraft back to Earth. Solar Orbiter, developed by ESA in collaboration with the US space agency NASA, was launched in 2020 from Florida. Until now, all the views of the sun have come from the same vantage point – looking face-on toward its equator from the plane on which Earth and most of the solar system 's other planets orbit, called the ecliptic plane. But in February, Solar Orbiter used a gravity-assist flyby around Venus to tilt its trajectory, enabling a view of the sun from about 17 degrees below the equator. Future Venus flybys will increase that angle to more than 30 degrees, allowing for even better polar observations. "The best is still to come. What we have seen is just a first quick peek," said solar physicist Sami Solanki from the Max Planck Institute for Solar System Research in Germany, who leads the science team behind the spacecraft's Polarimetric and Helioseismic Imager. Mr Solanki explained that "the spacecraft observed both poles, first the south pole, then the north pole'. He added: "The north pole's data will arrive in the coming weeks or months." Solar Orbiter is currently collecting information on several solar phenomena, including the sun's magnetic field, its activity cycle, and the solar wind – a constant, high-speed stream of charged particles that flows outward from the sun's outer atmosphere and fills the solar system. "We are not sure what we will find, and it is likely we will see things that we didn't know about before," solar physicist Hamish Reid of UCL's Mullard Space Science Laboratory said. The sun is a ball of hot electrically charged gas that, as it moves, generates a powerful magnetic field, which flips from south to north and back again every 11 years in what is called the solar cycle. The magnetic field drives the formation of sunspots, cooler regions on the solar surface that appear as dark blotches. At the cycle's beginning, the sun has fewer sunspots. Their number increases as the cycle progresses, before starting all over again. "What we have been missing to really understand this (solar cycle) is what is actually happening at the top and bottom of the sun," Mr Reid said. The sun's diameter is about 865,000 miles – more than 100 times wider than Earth. "Whilst the Earth has a clear north and south pole, the Solar Orbiter measurements show both north and south polarity magnetic fields are currently present at the south pole of the sun. This happens during the maximum in activity of the solar cycle, when the sun's magnetic field is about to flip. In the coming years, the sun will reach solar minimum, and we expect to see a more orderly magnetic field around the poles of the sun," Mr Reid said. "We see in the images and movies of the polar regions that the sun's magnetic field is chaotic at the poles at the (current) phase of the solar cycle - high solar activity, cycle maximum," Mr Solanki said. The sun is located about 93 million miles from our planet. "The data that Solar Orbiter obtains during the coming years will help modellers in predicting the solar cycle. This is important for us on Earth because the sun's activity causes solar flares and coronal mass ejections which can result in radio communication blackouts, destabilize our power grids, but also drive the sensational auroras," Mr Reid said. "Solar Orbiter's new vantage point out of the ecliptic will also allow us to get a better picture of how the solar wind expands to form the heliosphere, a vast bubble around the sun and its planets," he added. A previous spacecraft, Ulysses, flew over the solar poles in the 1990s. "Ulysses, however, was blind in the sense that it did not carry any optical instruments - telescopes or cameras - and hence could only sense the solar wind passing the spacecraft directly, but could not image the sun," Mr Solanki said.

World-first views of the Sun's poles released - but scientists say best is yet to come
World-first views of the Sun's poles released - but scientists say best is yet to come

Sky News

time2 hours ago

  • Sky News

World-first views of the Sun's poles released - but scientists say best is yet to come

The sun's south pole has been seen for the first time from outside the ecliptic plane in unprecedented images sent back to Earth by a solar orbiter. The Solar Orbiter spacecraft travelled 15 degrees below the sun's solar equator to take the images in mid-March - with the European Space Agency (ESA) and NASA revealing them to the world on Wednesday. It is only the second craft to have passed over the sun's poles - with the ESA and NASA's 1990-2009 Ulysses craft lacking the capacity to take any photos. "Today we reveal humankind's first-ever views of the sun's pole," ESA's director of science, Professor Carole Mundell, said. Describing it as a "new era of solar science", she added: "The sun is our nearest star, giver of life and potential disruptor of modern space and ground power systems, so it is imperative that we understand how it works and learn to predict its behaviour." 'Best is yet to come' According to the ESA, previous images of the sun have been taken from around its equator. This is because Earth, the other planets, and all other operational spacecraft orbit the Sun within a flat disc around the Sun called the ecliptic plane. However, by tilting its orbit out of this plane, Solar Orbiter has revealed the star from a whole new angle - and because the spacecraft is set to tilt even further "the best views are yet to come". The Solar Orbiter took off from Florida in 2020. Unlike Earth, which has fixed north and south poles, the sun's equivalents flip on an 11-year cycle. This is because its equator spins faster than its poles - every 26 days compared to every 33 days - meaning it does not rotate as a solid object, instead becoming so unstable it eventually flips. The sun is currently at what is referred to as "solar maximum", when the star is building up to the polar flip. During this period, its spots and solar flares are most active. In five or six years, the sun will reach its "solar minimum", when its magnetic activity is at its lowest. The images from Solar Orbiter's recent journey reveal a fragmented mosaic of north and south polarity at the sun's base. The spacecraft will continue its orbit around the sun until Christmas Eve 2026. Its next flight will see it fly past Venus in 2029.

European probe snaps first images of the sun's south pole
European probe snaps first images of the sun's south pole

NBC News

time2 hours ago

  • NBC News

European probe snaps first images of the sun's south pole

From the spacecraft's observations, scientists discovered that magnetic fields with both north and south polarity are currently present at the sun's south pole. This mishmash of magnetism is expected to last only a short time during the solar maximum before the magnetic field flips. Once that happens, a single polarity should slowly build up over time at the poles as the sun heads toward its quiet solar minimum phase, according to ESA. 'How exactly this build-up occurs is still not fully understood, so Solar Orbiter has reached high latitudes at just the right time to follow the whole process from its unique and advantageous perspective,' said Sami Solanki, director of the Max Planck Institute for Solar System Research in Germany and lead scientist for Solar Orbiter's PHI instrument, which is mapping the sun's surface magnetic field. Scientists have enjoyed close-up images of the sun before, but before now, they have all been captured from around the sun's equator by spacecraft and observatories orbiting along a plane similar to Earth's path around the sun. But Solar Orbiter's journey through the cosmos included close flybys of Venus that helped tilt the spacecraft's orbit, allowing it to see higher-than-normal latitudes on the sun. The newly released images were taken in late March, when Solar Orbiter was 15 degrees below the sun's equator, and then a few days later when it was 17 degrees below the equator — a high-enough angle for the probe to directly see the sun's south pole. 'We didn't know what exactly to expect from these first observations — the sun's poles are literally terra incognita,' Solanki said in a statement. Solar Orbiter was launched in February 2020. The European-led mission is being operated jointly with NASA. In the coming years, Solar Orbiter's path is expected to tilt even further, bringing even more of the sun's south pole into direct view. As such, the best views may be yet to come, according to ESA. 'These data will transform our understanding of the sun's magnetic field, the solar wind, and solar activity,' said Daniel Müller, ESA's Solar Orbiter project scientist.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store