Scientists Found One of the Heaviest Antiparticles Ever. It Could Help Explain Why the Universe Exists.
Understanding why we live in a matter-dominated universe demands that scientists recreate the quark-gluon plasma that existed one millionth of a second after the Big Bang.
A Large Ion Collider Experiment, or ALICE, at CERN's Large Hadron Collider does exactly that by smashing together heavy-ion particles and analyzing the results.
In late 2024, ALICE discovered hyperhelium-4 and its anti- counterpart. This is only the third hypernuclei ever discovered, and it could help scientists better understand things like the matter-antimatter asymmetry and the strange physics of neutron stars.
One of the biggest mysteries of the universe's creation goes by many names. Some call it the baryon asymmetry, others call it the matter asymmetry, and still others call it the matter-antimatter asymmetry. But all of these names speak to the same confounding question: Why does matter exist at all?
You, me, the countless stars across among the trillions of galaxies shouldn't exist—at least, not according to the Standard Model of physics. In those first moments of being, matter and antimatter should've been created in equal measure and annihilated each other, leaving only energy in their wake.
Fast-forward 13.8 billion years later, however, and it's obvious that we live in a matter-dominated universe—and particle physicists (understandably) want to know why. But understanding what might've caused matter to triumph over antimatter requires somehow recreating the conditions of the Big Bang. The best way to do that so far has been to slam particles together at near the speed of light and sift through the subatomic mess, and one of the best place in the world to do that is at CERN's Large Hadron Collider in Switzerland. Recently, scientists working on A Large Ion Collider Experiment (ALICE) once again showed why.
In late 2024, ALICE—which, as its name suggests, focuses on heavy-ion physics—discovered the heaviest antimatter particle to date at LHC—antihyperhelium-4. Exploring these kinds of exotic hypernuclei is important, as the quark-gluon plasma created by these ALICE's collisions mimic the conditions of the universe one millionth of a second after the Big Bang. So, if you want to understand why matter exists, then this is the place to look. You can read about the discovery in a preprint paper published on the server arXiv.
As you probably guessed, hyperhelium isn't the same as your typical helium atom. Instead, hyperhelium contain protons, neutrons, and particles known as hyperons that contain one or more quarks of the 'strange' type (but no charm, bottom, or top quarks). Although heavy-ion collisions create hypernuclei and antihypernuclei in sufficient quantities, finding them is immensely difficult, as they decay almost instantly. Antihyperhelium-4, for example, quickly becomes an antihelium-3 nucleus, an antiproton, and a charged pion, according to Physics World.
Scientists have also only discovered three of these antihypernuclei in the past 15 years. The other two—antihypertriton and antihyperhydrogen—were spotted by the STAR collaboration at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory in 2010 and 2024, respectively.
'What caused the difference in quantities of matter and antimatter in the universe?' Qiu Hao, a collaborator with STAR who helped discover the antihyperhydrogen, said in August of 2024. 'To answer this question, an important approach is to create new antimatter in the laboratory and study its properties.'
Further study of hypernuclei and antihypernuclei can also help experts explore other mysteries of the universe. By understanding how they interact with neutrons and protons, astrophysicists can also gain a better grasp of the intensely strange physics believed to occur inside the heart of neutron stars.
To fully understand the mysteries of our existence—as well as the strange celestial objects that fill the universe—scientists need a better understanding of the raw materials used to fashion existence in the first place. And the finding these hypernuclei particles adds a new piece to that cosmic puzzle.
You Might Also Like
The Do's and Don'ts of Using Painter's Tape
The Best Portable BBQ Grills for Cooking Anywhere
Can a Smart Watch Prolong Your Life?
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
a day ago
- Yahoo
Scientists Calculate That the Entire Big Bang Must Have Taken Place Inside a Black Hole
The standard model of cosmology may be the best explanation we've got for why the universe is the way it is and how it all came to be. But it's not the only explanation. Enter black hole cosmology. It's a radical idea which proposes that the Big Bang — the rapid unraveling of an infinitely dense point, believed to have given birth to the cosmos as we know it — actually took place in a black hole, which itself formed inside a larger "parent" universe. Ergo, all of us — and every star, planet, galaxy, and internet rando — are living inside one of these mysterious singularities. Enrique Gaztanaga, lead author of a new study published in the journal Physical Review D and a professor at the Institute of Cosmology and Gravitation at the University of Portsmouth, isn't the first to propose this controversial idea. But his team's research offers a new model for imagining how this hypothetical scenario took place. "Our calculations suggest the Big Bang was not the start of everything, but rather the outcome of a gravitational crunch or collapse that formed a very massive black hole — followed by a bounce inside it," Gaztanaga wrote in an essay for The Conversation. Certainly, there are a lot of holes you could poke in the standard model. Why is there more matter than anti-matter, when the universe should be uniform? Why did the universe undergo a period of "cosmic inflation" in which it expanded at faster than light speeds, then stopped? And why does its present day rate of expansion appear to be different depending on how we measure it? Gaztanaga's main gripe seems to be with our current understanding of a singularity. To him, the idea of the universe starting as a point of infinite density is immensely unsatisfying. "This is not just a technical glitch; it's a deep theoretical problem that suggests we don't really understand the beginning at all," he wrote. Gaztanaga also takes aim at other convenient cosmological constructions like dark energy, which is intended to explain why the universe's expansion is mysteriously accelerating. This hypothetical force is thought to make up 68 percent of the universe but is completely unobservable, leaving room for different-minded scientists to call its existence into question. Rethinking singularities could neatly resolve many of these conundrums. We return to Gaztanaga's paper. "Gravitational collapse does not have to end in a singularity," he wrote for The Conversation. "Our maths show that as we approach the potential singularity, the size of the universe changes as a (hyperbolic) function of cosmic time." This is a bold claim. The consensus is that gravitational collapse — like a star imploding into a black hole — must result in an infinitely dense singularity. What Gaztanaga is arguing happens instead is that the collapse not only halt short of completely crushing the matter, but reverses course — a "bounce," in his terminology. "What emerges on the other side of the bounce is a universe remarkably like our own," Gaztanaga explains. "Even more surprisingly, the rebound naturally produces the two separate phases of accelerated expansion — inflation and dark energy — driven not by a hypothetical fields but by the physics of the bounce itself." It's a fascinating explanation, but there's a lot that remains to be proved. It relies on discounting some very well-established physics behind singularities. The standard model may not be perfect, but it's the standard for a reason. It'll take a lot more to dethrone it, and Gaztanaga is optimistic that future missions like the European Space Agency's ARRAKIHS, which will study invisible structures of dark matter to test the model, could reveal the answers we're looking for. More on cosmology: Astronomers Confused to Discover That a Bunch of Nearby Galaxies Are Pointing Directly at Us
Yahoo
2 days ago
- Yahoo
This Particle Isn't Following the Rules of Physics. Maybe the Rules Are Wrong.
Here's what you'll learn when you read this story: For nearly a century, the magnetic anomaly of the fundamental particle known as a muon has served as a means to test theories against experimental reality. Recently, an international collaboration powered by the U.S.-based Fermilab has released its most accurate data on this anomalous magnetic dipole moment, known as g-2 ('gee minus two'). These new results align closely with recent theoretical predictions, and will serve as a benchmark moving forward. The Standard Model of Particle Physics is a remarkable scientific achievement spanning nearly a century, and its predictive power has proven incredibly consistent. However, any scientific model worth its salt also needs to withstand experimental scrutiny, and one of the places those tests are employed is Fermilab. Starting in 2017, an international collaboration of scientists have used data from Fermilab's 50-foot-diameter magnetic ring to measure the wobble of a fundamental particle known as a muon in what is referred to as the lab's 'muon g-2 experiment.' More than 200 times heavier than electrons, muons only survive for a few microseconds, but they have spins that makes them act like tiny magnets. This wobble, or precession, is due to an external magnetic field is called a g-factor, and a century ago, this factor was found to be 2 (hence the name 'muon g-2 experiment'). However, the introduction of quantum field theory complicates this number by bringing strong, weak, and Higgs fields interactions into the equation. This slight deviation from the '2' prediction is known as the muon's anomalous magnetic dipole moment. To better understand this anomaly, Fermilab has consistently released results from its run of experiments that stretches from 2017 to 2023. On June 3, 2025, the muon g-2 experiment finally released its full results, with a precision of roughly 127 parts-per-billion—the most sensitive and accurate measurement of the muon's magnetic anomaly to date. The results of the study were submitted to the journal Physical Review D. 'The anomalous magnetic moment, or g–2, of the muon is important because it provides a sensitive test of the Standard Model of particle physics,' Regina Rameika, the U.S. Department of Energy's Associate Director for the Office of High Energy Physics, said in a press statement. 'This is an exciting result and it is great to see an experiment come to a definitive end with a precision measurement.' Understanding this precise measurement of muon g-2 can help scientists discover new physics, as any deviation between experimental results and theoretical predictions using the Standard Model could point toward unknowns in our understanding of the subatomic world. While experimental physicists work to perfect ways of measuring the magnetic anomaly, theoretical physicists—especially those participating in the Muon Theory Initiative, which released its own update in late May—have largely sorted themselves into two 'camps' when calculating this theoretical prediction, according to Ethan Siegel at Big Think. One camp takes a data-driven approach to Hadronic vacuum polarization and the other uses a computational-based Lattice quantum chromodynamics (QCD) technique. In 2021, it appeared that Fermilab's initial results were much closer to the Lattice QCD computational calculations, dampening (but not eliminating) the possibility of new physics orbiting the muon. Now, with this new calculation in hand, scientists can move forward with renewed confidence in an experimental result that's been a popular test of the Standard Model of Physics for a century. 'As it has been for decades, the magnetic moment of the muon continues to be a stringent benchmark of the Standard Model,' Simon Corrodi, assistant physicist at Argonne National Laboratory and analysis co-coordinator, said in a press statement. 'The new experimental result sheds new light on this fundamental theory and will set the benchmark for any new theoretical calculation to come.' This isn't the end for measuring the muon magnetic anomaly—the Japan Proton Accelerator Research Complex aims to make its own g-2 measurements in the 2030s (though Fermilab says that its initial precision will be worse than their own latest results). Today, this muon g-2 result is a testament of the incredible engineering and multidisciplinary scientific effort required to uncover just a little bit more about our ever-mysterious universe. You Might Also Like The Do's and Don'ts of Using Painter's Tape The Best Portable BBQ Grills for Cooking Anywhere Can a Smart Watch Prolong Your Life?
Yahoo
3 days ago
- Yahoo
Astronomers Just Discovered The Biggest Explosions Since The Big Bang
A never-before-seen type of giant space explosion – the biggest bangs since the Big Bang – has been accidentally captured by the Gaia space telescope. From the hearts of distant galaxies, the mapping telescope recorded sudden, extreme increases in brightness – colossal flares of light that lingered far longer than any such flares had been known to previously. These blasts were calculated to release as much energy as 100 Suns would over the course of their combined lifetimes. Analysis of that light revealed something that was both new and familiar at the same time: stars being torn apart by black holes, but on a scale we hadn't observed before. Each star was a large one, at least three times as massive as the Sun; and each black hole was a supermassive beast lurking in the center of the star's host galaxy. Such events are usually known as tidal disruption events, or TDEs. Astrophysicists are calling these new ones 'extreme nuclear transients' – ENTs for short. "We've observed stars getting ripped apart as tidal disruption events for over a decade, but these ENTs are different beasts, reaching brightnesses nearly 10 times more than what we typically see," says astrophysicist Jason Hinkle of the University of Hawaiʻi's Institute for Astronomy (IfA). "Not only are ENTs far brighter than normal tidal disruption events, but they remain luminous for years, far surpassing the energy output of even the brightest known supernova explosions." The rather tame term 'tidal disruption' is used to describe what gravitational forces do to an object that gets too close to a black hole. At a certain point, the power of the external gravitational field surpasses the gravity holding an object together, and it comes apart in a wild scream of light before at least partially falling into the great unknown beyond the black hole's event horizon. There are telescopes trained on the sky to catch these screams, applying a wide field of view to take in as much of the sky as possible, waiting for those unpredictable flares that denote the death throes of an unlucky star. Astronomers have managed to observe a good number of TDEs, and know roughly how they should play out. There's a sudden brightening in a distant galaxy, with a light curve that rises to a rapid peak before gradually fading over the course of weeks to months. Astronomers can then analyze that light to determine properties such as the relative masses of the objects involved. Gaia was a space telescope whose mission was to map the Milky Way in three dimensions. It spent a great deal of time staring at the sky to capture precise parallax measurements of the stars in the Milky Way. On occasion, however, it managed to exceed its mission parameters. When combing through Gaia data, Hinkle and his colleagues found two strange events: Gaia16aaw, a flare recorded in 2016; and Gaia18cdj, which the telescope caught in 2018. Both events bore a strong similarity to an event recorded by the Zwicky Transient Facility in 2020. Because that event was so insanely powerful, and because it was given the designation ZTF20abrbeie, astronomers nicknamed it "Scary Barbie". Hinkle and his team determined that Gaia16aaw and Gaia18cdj are the same kind of event as Scary Barbie, and set about trying to figure out what caused them. They ruled out supernova explosions – the events were at least twice as powerful as any other known transients, and supernovae have an upper brightness limit. A supernova, the team explained, typically releases as much light as the Sun will in its entire, 10-billion-year lifespan. The output of an ENT, however, is comparable to the lifetime output of 100 Suns all rolled together. Rather, the properties of the ENT events, the researchers found, were consistent with TDEs – just massively scaled up. That includes how much energy is expended, and the shape of the light curve as the event brightens and fades. ENTs are incredibly rare – the team calculated that they are around 10 million times less frequent than supernovae – but they represent a fascinating piece of the black hole puzzle. Supermassive black holes are millions to billions of times the mass of the Sun, and we don't have a clear idea of how they grow. ENTs represent one mechanism whereby these giant objects can pack on mass. "ENTs provide a valuable new tool for studying massive black holes in distant galaxies. Because they're so bright, we can see them across vast cosmic distances – and in astronomy, looking far away means looking back in time," says astrophysicist Benjamin Shappee of IfA. "By observing these prolonged flares, we gain insights into black hole growth during a key era known as cosmic noon, when the universe was half its current age [and] when galaxies were happening places – forming stars and feeding their supermassive black holes 10 times more vigorously than they do today." The research has been published in Science Advances. Titan's Atmosphere 'Wobbles Like a Gyroscope' – And No One Knows Why A 'Crazy Idea' About Pluto Was Just Confirmed in a Scientific First A Giant Mouth Has Opened on The Sun And Even It Looks Surprised