
Tired of cracked eggs? Scientists reveal the surprising storage method to avoid that
Egg-stra, egg-stra!
Scientists have revealed the best way to store your precious breakfast orbs — and it's not the way they're packaged now.
Turns out, laying eggs on their side — not storing them upright — is the best way to keep them from cracking, according to MIT researchers.
Advertisement
4 MIT researchers say the secret to keeping eggs intact is storing them sideways instead of upright.
MIT / Communications Physics
A new study, published Thursday in the journal Communications Physics, found that eggs dropped sideways are less likely to break than those dropped vertically.
'Eggs are tougher when loaded on their equator,' the researchers said.
Advertisement
It turns out the sides can take more of a beating than their pointy or rounded ends, and that could mean a lot for proper storage.
4 A May 8 study in Communications Physics found that eggs dropped on their sides are tougher to crack than those dropped vertically.
MIT / Communications Physics
Researchers tested 180 eggs, dropping them from three different heights to see how they'd hold up in different orientations.
The result?
Advertisement
Eggs dropped vertically were more likely to crack than those dropped horizontally, even at the lowest height.
Of the eggs dropped vertically from a mere 8 millimeters, over half of them shattered.
4 Researchers put 180 eggs to the test, dropping them from three heights to see how they'd fare in different positions.
MIT / Communications Physics
But when dropped sideways? Fewer than 10% of eggs suffered a break.
Advertisement
The scientists' proper-storage assessment concluded that 'eggs are tougher when loaded horizontally.'
And when it comes to cracking eggs for cooking, MIT's findings suggest that instead of smacking them on the middle, you're better off aiming for the top or bottom.
In a related matter, what should you do if your eggs are already cracked?
'If you know that you just cracked the egg by accident, then I would cook that one up and call it good,' Maine-based backyard chicken expert Lisa Steele told Fox News Digital in January.
However, Steele warned against using eggs found already cracked in the carton, saying, 'I wouldn't use an egg that I found cracked in a carton I had bought in the store,' since it's impossible to know how long it's been sitting there.
4 Instead of tapping your eggs in the middle to crack them — the go-to method for most home cooks — the MIT researchers say you're better off targeting the top or bottom, where the shell is more likely to give way cleanly without splintering.
MIT / Communications Physics
The United States Department of Agriculture recently reported that egg production in the U.S. dropped 4% in November 2024 amid rising bird flu cases and soaring prices.
Advertisement
As such, costs are cracking records at the supermarket — hitting $6.23 a dozen in March, up nearly 6% from February and a jaw-dropping 60% from last year, according to the Bureau of Labor Statistics.
For now, the MIT scientists have a message for egg packagers everywhere: It's time to flip the script — and the eggs.

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
an hour ago
- Yahoo
Mysteriously Magnetic Moon Rocks Might Have an Explosive Origin Story
Unlike Earth, the Moon doesn't have much of a magnetic field – and yet, a strange pile of rocks on the far side seems mysteriously magnetized. A new study suggests that a major cataclysm, over and done in under an hour, left a lasting imprint. A team led by researchers from Massachusetts Institute of Technology (MIT) has found that a massive impact may have generated a huge amount of plasma that temporarily strengthened the Moon's tiny, ancient magnetic field. According to lead author Isaac Narrett, a planetary scientist at MIT, this theory could explain the presence of highly magnetic rocks detected on the Moon's far side in a region near the south pole. "There are large parts of lunar magnetism that are still unexplained," he says. "But the majority of the strong magnetic fields that are measured by orbiting spacecraft can be explained by this process – especially on the far side of the Moon." In 1959, the Soviet Luna 1 spacecraft conducted the first magnetic measurements of the Moon and found that unlike Earth, it did not have a strong, intrinsic magnetic field. Later research showed that the Moon had weak fields largely confined to the lunar crust, which seem to be created by interaction with charged solar particles. However, the analysis of samples brought back by astronauts on the Apollo missions showed that some rocks formed in magnetic fields that were much stronger. This led to the general consensus that while the Moon does not have an intrinsic magnetic field today, it once did. In a previous study, MIT planetary scientists simulated how a giant impact could have amplified solar-generated magnetic fields on the Moon. However, their results indicated that this would not generate a field strong enough to explain the highly magnetic measurements of surface rocks. In the new study, Narrett and associates took a different approach and assumed the Moon once had a dynamo that produced a weak lunar magnetic field. Given the size of the Moon's core, they estimated that such a field would have been about one-50th the strength of Earth's field today. They then simulated a large impact and the cloud of plasma that would result as the force of the impact vaporized material on the surface. They also ran simulations on how the resulting plasma would flow and interact with the Moon's existing magnetic field. This entire process would have been incredibly fast, lasting around 40 minutes from when the field was amplified to when it decayed back to baseline. This is consistent with the fact that one of the Moon's largest impact basins, Mare Imbrium, is located exactly opposite the far side southern polar region. According to their simulations, an impact powerful enough to create the Imbrium basin would have sent a pressure wave through the Moon that converged on the other side. The researchers suspect that this shock coincided with the plasma cloud amplifying the Moon's magnetic field. Rocks can contain records of the magnetic fields they formed under, thanks to the orientation of the electrons inside them. In this case, the shock waves could have temporarily disrupted electrons in the rocks at the point of convergence, and as they settled back down they could have taken a snapshot of the short-lived, strong magnetic field. "It's as if you throw a 52-card deck in the air, in a magnetic field, and each card has a compass needle," says study co-author and planetary scientist Benjamin Weiss at MIT. "When the cards settle back to the ground, they do so in a new orientation. That's essentially the magnetization process." According to the researchers, these findings have effectively settled the debate between the competing schools of thought. Instead of the Moon's magnetic field being the result of a dynamo or a massive impact, their results show that a combination of a dynamo and a large impact with a resulting shockwave could be responsible for the Moon's highly magnetized rocks, especially on the far side. This theory could be tested in the coming years as astronauts travel to the lunar south pole and collect rock samples, as part of the Artemis Program. The paper detailing their findings was published in Science Advances. Fiery Orange Gems From The Moon Reveal Secrets of Its Violent Past A Giant Hole Just Opened in The Sun – And It's Blasting Earth With Solar Wind The Universe's Largest Map Has Arrived, And You Can Stargaze Like Never Before
Yahoo
3 hours ago
- Yahoo
Hurricane forecasters will go without a key tool this season
For the past four years, a fleet of drone vessels has purposefully steered into the heart of hurricanes to gather information on a storm's wind speeds, wave heights and, critically, the complex transfer of heat and moisture between the ocean and the air right above it. These small boats from California-based company Saildrone also film harrowing footage from the ocean surface in the middle of nature's most powerful tempests—videos that are scientifically useful and have also gone viral, giving ordinary people windows into storms. Importantly, Saildrone vessels were being used by federal scientists to improve forecast and warning accuracy. But they won't be in forecasters' suite of tools this year. The company 'was unable to bid' on a contract for this season, National Oceanic and Atmospheric Administration spokesperson Keeley Belva told CNN. The reason why concerns the timing of NOAA's solicitation for this season's contract, according to a NOAA employee speaking on condition of anonymity. NOAA sent out its request for contract proposals too late, preventing Saildrone not just from bidding, but from pre-deploying its fleet to multiple launching ports on the Atlantic and Gulf Coast in time for hurricane season. It's another example among many of the ways the Trump administration has fumbled storm preparedness and response efforts as the season begins, leading to fears of less accurate hurricane projections compared to recent years. The Saildrone news came just as NOAA was roiled by staffing cuts through firings, early retirements and other incentives used to shrink the agency. Morale has plummeted, especially in the wake of the Trump administration's budget proposal that would eliminate the entire branch of the agency that does oceanic and atmospheric research, which could wipe out hurricane research activities if enacted. Even if it isn't, the Trump administration could use other means to implement such steep cuts. Belva did not provide details when asked for specifics about the issuance date for the proposals request and the reasons for the delay given the start of hurricane season on June 1. She cited 'ongoing' discussions with Saildrone about potential future deployments with NOAA. 'NOAA continues to explore the use of other uncrewed systems in meeting the agency's data needs within hard-to-access regions of tropical cyclones during the 2025 season,' Belva added. 'The agency is preparing for the use of uncrewed surface vehicle deployments with industry partners for the 2026 season.' NOAA will still field new technologies this season to gain a better understanding of how hurricanes work and how strong individual storms are, including ultra-high altitude weather balloons, said Joe Cione, the lead meteorologist for emerging technologies at the agency's Atlantic Oceanographic and Meteorological Laboratory. But all of these new tools are aerial assets, not ocean-based, as the saildrones were. With saildrones missing in action this hurricane season, meteorologists will lack continuous, direct observations of hurricanes' strongest winds near the surface of the ocean and temperatures of the warm water that fuels the storms. The agency will still use dropsondes—bundles of sensors that can measure the fierce winds as they fall through the storm after being dropped out of hurricane hunter aircraft. But they only offer a glimpse into a blip of time at a particular location in a storm, whereas the saildrones can loiter for hours or longer, providing rare observations from the lowest level of the atmosphere, said NOAA oceanographer Gregory Foltz. Saildrone observations were set to be piped directly into forecast models through newer, faster processes this year with the goal of boosting accuracy, Foltz said. In addition, forecasters at the National Hurricane Center would have been able to use saildrone data to better determine a storm's structure and intensity when issuing an advisory. The boats had another unexpected benefit: Their dizzying videos helped warn people in harm's way of a storm's ferocity, Foltz said. The videos may play a role in peoples' decisions to evacuate by showing how severe conditions are, he said. NOAA's aerial technology this season will hopefully bolster the data forecasters have to work with. During the next three weeks, NOAA's hurricane hunters will be conducting clear air tests of some of those new platforms. Cione, who focuses on identifying promising technologies for weather research and forecasting at the Atlantic Oceanographic and Meteorological Laboratory, touted airborne drones like the Black Swift SØ drone. It weighs just three pounds and will be deployed into storms from the belly of a NOAA WP-3 hurricane hunter aircraft. These drones can fly low in a storm for extended periods, recording winds, temperatures and other parameters in the little-sampled lowest 1,500 feet of a hurricane. 'Our situational awareness goes way up,' Cione said, when readings come back from within this layer of air. Researchers will also be using tiny, light instrument packets known as 'Streamsondes' that can be dropped from an aircraft. These fall more slowly than the standard dropsondes and therefore gather more data. This year, Cione says, researchers may work to 'swarm' Streamsondes, or drop as many as 50 of them in a matter of minutes, into an area of interest within a storm to pinpoint what a hurricane's winds and air pressure are, for example. None of these aerial platforms will provide the clear video feeds that people may have become accustomed to from the saildrones the past four years, though, nor can they reliably measure winds and sea surface temperatures for long periods of time. Ultimately, Foltz said, researchers want to get aerial and ocean-based observations at the same time for a more three-dimensional glimpse into the inner workings of nature's most powerful storms. That includes uncrewed underwater drones collecting data beneath storms, he added. 'We need everything in the atmosphere and the ocean together,' Foltz said. 'That's a big goal of ours.' That won't happen this year, but assuming NOAA's research division still exists next year, it could get closer to being realized in 2026. 'You don't know how important something is until you take it away,' Foltz said of the saildrones' data contributions.


CNN
3 hours ago
- CNN
Hurricane forecasters will go without a key tool this season
Hurricanes Storms Federal agenciesFacebookTweetLink Follow For the past four years, a fleet of drone vessels has purposefully steered into the heart of hurricanes to gather information on a storm's wind speeds, wave heights and, critically, the complex transfer of heat and moisture between the ocean and the air right above it. These small boats from California-based company Saildrone also film harrowing footage from the ocean surface in the middle of nature's most powerful tempests—videos that are scientifically useful and have also gone viral, giving ordinary people windows into storms. Importantly, Saildrone vessels were being used by federal scientists to improve forecast and warning accuracy. But they won't be in forecasters' suite of tools this year. The company 'was unable to bid' on a contract for this season, National Oceanic and Atmospheric Administration spokesperson Keeley Belva told CNN. The reason why concerns the timing of NOAA's solicitation for this season's contract, according to a NOAA employee speaking on condition of anonymity. NOAA sent out its request for contract proposals too late, preventing Saildrone not just from bidding, but from pre-deploying its fleet to multiple launching ports on the Atlantic and Gulf Coast in time for hurricane season. It's another example among many of the ways the Trump administration has fumbled storm preparedness and response efforts as the season begins, leading to fears of less accurate hurricane projections compared to recent years. The Saildrone news came just as NOAA was roiled by staffing cuts through firings, early retirements and other incentives used to shrink the agency. Morale has plummeted, especially in the wake of the Trump administration's budget proposal that would eliminate the entire branch of the agency that does oceanic and atmospheric research, which could wipe out hurricane research activities if enacted. Even if it isn't, the Trump administration could use other means to implement such steep cuts. Belva did not provide details when asked for specifics about the issuance date for the proposals request and the reasons for the delay given the start of hurricane season on June 1. She cited 'ongoing' discussions with Saildrone about potential future deployments with NOAA. 'NOAA continues to explore the use of other uncrewed systems in meeting the agency's data needs within hard-to-access regions of tropical cyclones during the 2025 season,' Belva added. 'The agency is preparing for the use of uncrewed surface vehicle deployments with industry partners for the 2026 season.' NOAA will still field new technologies this season to gain a better understanding of how hurricanes work and how strong individual storms are, including ultra-high altitude weather balloons, said Joe Cione, the lead meteorologist for emerging technologies at the agency's Atlantic Oceanographic and Meteorological Laboratory. But all of these new tools are aerial assets, not ocean-based, as the saildrones were. With saildrones missing in action this hurricane season, meteorologists will lack continuous, direct observations of hurricanes' strongest winds near the surface of the ocean and temperatures of the warm water that fuels the storms. The agency will still use dropsondes—bundles of sensors that can measure the fierce winds as they fall through the storm after being dropped out of hurricane hunter aircraft. But they only offer a glimpse into a blip of time at a particular location in a storm, whereas the saildrones can loiter for hours or longer, providing rare observations from the lowest level of the atmosphere, said NOAA oceanographer Gregory Foltz. Saildrone observations were set to be piped directly into forecast models through newer, faster processes this year with the goal of boosting accuracy, Foltz said. In addition, forecasters at the National Hurricane Center would have been able to use saildrone data to better determine a storm's structure and intensity when issuing an advisory. The boats had another unexpected benefit: Their dizzying videos helped warn people in harm's way of a storm's ferocity, Foltz said. The videos may play a role in peoples' decisions to evacuate by showing how severe conditions are, he said. NOAA's aerial technology this season will hopefully bolster the data forecasters have to work with. During the next three weeks, NOAA's hurricane hunters will be conducting clear air tests of some of those new platforms. Cione, who focuses on identifying promising technologies for weather research and forecasting at the Atlantic Oceanographic and Meteorological Laboratory, touted airborne drones like the Black Swift SØ drone. It weighs just three pounds and will be deployed into storms from the belly of a NOAA WP-3 hurricane hunter aircraft. These drones can fly low in a storm for extended periods, recording winds, temperatures and other parameters in the little-sampled lowest 1,500 feet of a hurricane. 'Our situational awareness goes way up,' Cione said, when readings come back from within this layer of air. Researchers will also be using tiny, light instrument packets known as 'Streamsondes' that can be dropped from an aircraft. These fall more slowly than the standard dropsondes and therefore gather more data. This year, Cione says, researchers may work to 'swarm' Streamsondes, or drop as many as 50 of them in a matter of minutes, into an area of interest within a storm to pinpoint what a hurricane's winds and air pressure are, for example. None of these aerial platforms will provide the clear video feeds that people may have become accustomed to from the saildrones the past four years, though, nor can they reliably measure winds and sea surface temperatures for long periods of time. Ultimately, Foltz said, researchers want to get aerial and ocean-based observations at the same time for a more three-dimensional glimpse into the inner workings of nature's most powerful storms. That includes uncrewed underwater drones collecting data beneath storms, he added. 'We need everything in the atmosphere and the ocean together,' Foltz said. 'That's a big goal of ours.' That won't happen this year, but assuming NOAA's research division still exists next year, it could get closer to being realized in 2026. 'You don't know how important something is until you take it away,' Foltz said of the saildrones' data contributions.