
Could This Be The End Of Cancer? Scientists Develop Revolutionary mRNA Vaccine
What makes the finding especially promising is that the vaccine doesn't target specific tumour proteins. Instead, it activates the immune system as if it were fighting a virus. This effect was achieved by boosting the expression of a protein called PD-L1 within tumours, which made them more responsive to treatment.
Lead researcher Dr. Elias Sayour, a paediatric oncologist at UF Health, said in a news release this discovery could lead to a new way of treating cancer without relying solely on surgery, radiation, or chemotherapy. The study was supported by the National Institutes of Health and other major institutions.
If future studies in humans show similar results, the research could pave the way for a universal cancer vaccine that helps treat many types of difficult, treatment-resistant cancers.
"This paper describes a very unexpected and exciting observation: that even a vaccine not specific to any particular tumor or virus - so long as it is an mRNA vaccine - could lead to tumor-specific effects," said Sayour, principal investigator at the RNA Engineering Laboratory within UF's Preston A. Wells Jr. Center for Brain Tumor Therapy.
"This finding is a proof of concept that these vaccines potentially could be commercialized as universal cancer vaccines to sensitize the immune system against a patient's individual tumor," said Sayour, a McKnight Brain Institute investigator and co-leader of a program in immuno-oncology and microbiome research.
Until now, there have been two main ideas in cancer-vaccine development: to find a specific target expressed in many people with cancer or to tailor a vaccine that is specific to targets expressed within a patient's own cancer.
"This study suggests a third emerging paradigm," said Duane Mitchell, MD, PhD, a co-author of the paper. "What we found is by using a vaccine designed not to target cancer specifically but rather to stimulate a strong immunologic response, we could elicit a very strong anticancer reaction. And so this has significant potential to be broadly used across cancer patients, even possibly leading us to an off-the-shelf cancer vaccine."
For more than eight years, Sayour has pioneered high-tech anticancer vaccines by combining lipid nanoparticles and mRNA. Short for messenger RNA, mRNA is found inside every cell, including tumour cells, and serves as a blueprint for protein production.
This new study builds upon a breakthrough last year by Sayour's lab: In a first-ever human clinical trial, an mRNA vaccine quickly reprogrammed the immune system to attack glioblastoma, an aggressive brain tumour with a dismal prognosis. Among the most impressive findings in the four-patient trial was how quickly the new method, which used a "specific" or personalised vaccine made using a patient's own tumour cells, spurred a vigorous immune system response to reject the tumour.
In the latest study, Sayour's research team adapted their technology to test a "generalised" mRNA vaccine, meaning it was not aimed at a specific virus or mutated cells of cancer but engineered simply to prompt a strong immune system response. The mRNA formulation was made similarly to the COVID-19 vaccines, rooted in similar technology, but wasn't aimed directly at the well-known spike protein of COVID.

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


The Hindu
an hour ago
- The Hindu
Telescopes spot start of planet formation in Orion
When rocky worlds like the earth began to form, dust in the young Solar System was first heated until it vaporised and then cooled so that the very first, refractory (i.e. heat-loving) minerals could crystallise. Catching that moment in another star system would show astronomers exactly how planet formation begins — but no one had seen it before. A new study in Nature this month has reported just such an event. By examining the star HOPS‑315 in Orion, whose protoplanetary disc is tilted just enough for someone on or near the earth to peer deeper within, researchers from France, the Netherlands, Sweden, Taiwan, and the US observed raw rock vapour cool and crystallise. The protoplanetary disc is a flat, rotating pancake-shaped mass of gas and dust that surrounds a newborn star. Inside it, dust grains bump together, stick, and gradually grow into rocks, planets, moons, and other bodies while the gas creates atmospheres and influences the planets' long-term orbits. The observations themselves were conducted by the NASA James Webb Space Telescope and the Atacama Large Millimeter/sub‑millimeter Array (ALMA) observatory in Chile. In 2023, the team used the NIRSpec and MIRI integral‑field spectrographs onboard the telescope to collect sharp energy readings across a range of frequencies. Eight months later, ALMA observed the same system for signs of carbon monoxide, silicon monoxide and sulphur monoxide. Together, the telescope traced warm gas and dust only a few stellar radii from the star while ALMA mapped cooler gas farther out. The telescope's data contained evidence of a strong band of silicon monoxide gas at around 470 K as well as crystalline silicates. Both lay within 2.2 AU of the star — well inside Mercury's orbit if this were in the solar system. (1 AU equals the earth-sun distance.) The team also ran computer simulations, which predicted that around 1 AU from the star, temperatures hovered around 1,300 K, which is the temperature at which dust just begins to evaporate. The study's energy readings matched the prediction: that interstellar grains must have vaporised there, releasing silicon monoxide gas that then cooled and re-condensed into fresh shards of crystals. According to the study, the relative quantities of crystals of forsterite, enstatite, and tentative silica were reminiscent of inclusions — i.e. minerals trapped inside minerals — that have been found in primitive meteorites on the earth, meaning that a similar condensation chemistry is under way around the star. The ALMA data also revealed no slow silicon monoxide at the star's position whereas the Webb telescope's data was blueshifted by around 10 km/s. Together, they indicate that the minerals lay inside the rising disc atmosphere, the thin upper layer of gas and dust above the mid‑plane of the protoplanetary disc, rather than in the material pouring out of the star. Thus the study has reported the first evidence of solid matter condensing out of rock vapour around a star, a.k.a. the first step of planet formation.
&w=3840&q=100)

First Post
2 days ago
- First Post
Have scientists decoded why the universe exists? Cern study points to matter-antimatter asymmetry
The finding offers vital clues to the long-standing mystery of why the universe is composed predominantly of matter, rather than being annihilated by an equal amount of antimatter read more A new study has shed light on one of humankind's fundamental queries: Why does the universe exist? Image courtesy: Nasa A new study at CERN has provided critical insights into one of the most fundamental questions in physics: why does anything exist at all? Researchers working on the Large Hadron Collider beauty (LHCb) experiment have observed a rare form of symmetry violation in the decays of beauty baryons– particles containing a bottom quark. The finding offers vital clues to the long-standing mystery of why the universe is composed predominantly of matter, rather than being annihilated by an equal amount of antimatter. STORY CONTINUES BELOW THIS AD The study, published in Nature, reports the observation of charge–parity (CP) violation in a baryonic decay process, marking a significant development in the quest to understand the imbalance between matter and antimatter in the early universe. What did the scientists observe? The experiment focused on a specific decay of the beauty baryon, into a proton, a kaon (K−), and two pions (π+ and π−). This decay can occur via two different quark-level pathways: one involving a bottom-to-up (b → u) transition and another involving a bottom-to-strange (b → s) transition. Crucially, the researchers found that these two processes do not behave symmetrically when matter is swapped for antimatter. This violation of CP symmetry is a direct indication that the laws of physics are not entirely the same for matter and antimatter– a foundational requirement for explaining why the universe didn't simply self-destruct in a flash of mutual annihilation shortly after the Big Bang. Why is CP violation so important? CP violation had previously been observed in the decays of mesons– particles made of a quark and an antiquark. However, baryons (made of three quarks) are less explored in this context. The new findings from the LHCb collaboration represent the first clear evidence of CP violation in baryon decays, expanding the frontier of known symmetry-breaking phenomena. This asymmetry is a necessary component in explaining the observed dominance of matter in the universe. Without it, the Standard Model predicts that equal amounts of matter and antimatter would have been produced in the early universe– leading to their mutual destruction.
&w=3840&q=100)

First Post
2 days ago
- First Post
Google turns Android phones into earthquake detectors, records 11,000 tremors on crowdsourcing
The Android Earthquake Alerts system prioritises scale over precision, leveraging the widespread use of Android smartphones, which collect motion data by default unless opted out read more Follow us on Google News Google utilised motion sensors in over two billion mobile phones from 2021 to 2024 to detect earthquakes and issued automated warnings to millions across 98 countries, revealed a Science journal analysis released last week. The analysis shows that Google's system recorded over 11,000 quakes, matching the performance of traditional seismometers. Independent earthquake researchers commend the system but call for greater transparency into Google's proprietary technology before public officials rely on it. Traditional seismometer-based alert systems exist in places like Mexico, Japan, and the US west coast. STORY CONTINUES BELOW THIS AD In 2020, Google launched a crowd-sourced system using Android phones to detect early tremors. Data from its first three years, released recently, confirm its effectiveness and improvement. Google notes that annual earthquake deaths average thousands, but its mobile-based alerts have expanded access tenfold since 2019. 'It's very impressive: most countries don't have an earthquake early-warning system, and this can help provide that service,' Allen Husker, a seismologist at the California Institute of Technology, was quoted as saying by Nature. However, he seeks more access to Google's data and algorithms. Google's scientists claim they're as transparent as possible, citing privacy constraints on sharing raw phone data. They told Nature that the Science paper aims to clarify the system's operations. 'That really is the origin of this paper,' says Richard Allen, a University of California, Berkeley seismologist and Google visiting faculty. 'I hope the community will recognise that and appreciate that.' How does Google's Earthquake Alerts system work? The Android Earthquake Alerts system prioritises scale over precision, leveraging the widespread use of Android smartphones, which collect motion data by default unless opted out. Google's algorithms analyse signals, accounting for regional geological and construction variations, as well as differences in phone motion sensors. Challenges persist in detecting major earthquakes. STORY CONTINUES BELOW THIS AD The system underestimated two powerful 2023 Turkey quakes, sending 4.5 million warnings. After algorithm upgrades, re-analysis showed the system could have issued urgent 'TakeAction' alerts to ten million phones. 'This shows they have been working to improve the system since 2023, with tangible positive results,' says Harold Tobin, a University of Washington seismologist.