Scientists Spotted Evidence of an Unseen Universe
At that point in cosmic history, the universe was shrouded by neutral hydrogen, and most objects and phenomena would not be visible until nearly a billion years later.
For now, researchers think the light might be coming from the first stars to exist, or outflows from a supermassive black hole at the galactic core. But the source remains unknown.
Deep in the universe are stars and galaxies and objects so distant that the light we're watching them produce is billions of years old. But there is one ancient light we can see that we shouldn't be seeing at all.
As part of the James Webb Space Telescope Advanced Deep Extragalactic Survey (JADES), NASA's James Webb Space Telescope (JWST) spotted something that should not be visible to us—the galaxy JADES-GS-z13-1. This galaxy existed only 330 million years after the Big Bang, which was very much still the universe's baby phase.
Webb was able to spot GS-z13-1 in the first place by picking up on clear Lyman-alpha emissions from the galaxy. These emissions are released when an electron in a neutral hydrogen atom is excited by a photon that is energetic enough, and are very commonly detected throughout the cosmos. But here's the thing—they're very commonly detected now. Technically speaking, we should not be able to detect Lyman-alpha emissions from just 330 million years after the Big Bang.
Shrouded in neutral hydrogen, which absorbs light, the universe was mostly opaque during its earliest days, and remained so until about a billion years after its birth. It was only during the epoch of reionization that light from stars became powerful enough to tear apart these atoms, rip off their electrons, and escape through the cloud. With all that neutral hydrogen now ionized—meaning that it was positively charged, as a result of losing its negatively charged electrons—the universe became transparent. That's the first moment at which we should be able to detect Lyman-alpha emissions.
But if this didn't happen until about a billion years after the Big Bang, how is it possible that scientists can see GS-z13-1, which existed when its light should have been obscured?
'The unexpected Lyman-alpha emission indicates the galaxy is a prolific producer and leaker of ionizing photons,' NASA and ESA researchers said in a study recently published in the journal Nature. 'This suggests massive, hot stars or an active galactic nucleus (AGN) have created an early reionized region to prevent complete [suppression] of Lyman-alpha.'
It is possible that the first stars to exist—known as Population III or Pop III stars—are the source of the light coming from GS-z13-1. These stars are thought to have been much more massive and luminous than stars that exist now, and it would be an incredible discovery if it was confirmed that the Lyman-alpha emissions are coming from Pop III stars. But there are some issues with this theory—the stellar mass predicted from the galaxy is not high enough to allow for these stars, for example. There are also some other emissions expected from Pop III stars that are missing from GS-z13-1.
The researchers think another possibility is the supermassive black hole in the galaxy's active galactic nucleus, or AGN. Supermassive black holes accrete and devour so much matter that they belch out enormous and extremely bright outflows of gas, which scientists think could have been enough to reionize just one section of the universe a little bit early.
For now, we're all still in the dark. But scientists are grateful for—if confused by the existence of—this ancient flashlight.
You Might Also Like
Can Apple Cider Vinegar Lead to Weight Loss?
Bobbi Brown Shares Her Top Face-Transforming Makeup Tips for Women Over 50

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


Scientific American
an hour ago
- Scientific American
Cosmic Tornado from Star's Birth Whirls in Dazzling JWST Image
When a star is born, the process leaves behind a flurry of high-energy gas, dust and debris. Some of this remnant material clumps together into planets, the way Earth likely formed. Others end up floating endlessly as meteors and space dust. But when conditions are just right, powerful plasma jets blasting out of a young star whip some of the debris into a giant, helical tower of steamy-looking cosmic dust—one of which we now can see better than ever before, thanks to the James Webb Space Telescope (JWST). Astronomers had long been aware of these so-called Herbig-Haro objects—brilliant flares of ionized gas, often near newborn stars, that can be light-years long—including one named HH 49/50, whose characteristic shape led to its nickname of 'cosmic tornado.' This object shines in the Chamaeleon I Cloud complex 625 light-years from Earth. Back in 2006, when HH 49/50 was first spotted by the now decommissioned Spitzer Space Telescope, astronomers could make out only an out-of-focus (albeit recognizably helical) lump of heated gas and dust with something shining at its tip. Although it was an exciting discovery at the time, the image's low resolution left the situation blurry. Now, with the much bigger JWST, the full picture snaps into focus: the telescope captured this field of dust and debris just as a baby protostar (probably located somewhere on its lower right, outside the boundary of the image shown here) was blasting it into this very particular shape. The fuzzy blob at the top resolves into a distant spiral galaxy unrelated to the object itself. Its apparent position atop this ongoing event is just a quirk of our perspective. On supporting science journalism If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today. This view, and the great distance, also creates a few other optical illusions, says Macarena Garcia Marin, an astrophysicist at the European Space Agency who was part of the team that took the new image. For example, the smaller dots appearing to float in front of the cosmic tornado aren't dust; they're actually entire galaxies shining through from behind it. The pointy dots are lone stars. Still, the chance alignment of these cosmic entities lets scientists study a rich array of extraterrestrial phenomena, says Melissa McClure, an astronomer at Leiden University in the Netherlands who was not on the imaging team. Notably, we can see processes such as accretion in action, she says—'And the image is just gorgeous!' Garcia Marin is particularly struck by the JWST picture's ephemeral nature, at least on cosmic scales. When the protostar eventually grows up, most likely beyond our lifetimes, the jets it produces and the accompanying cosmic tornado will fade, Garcia Marin says: 'You're looking at a snapshot of a moment in the universe.'


Fast Company
2 hours ago
- Fast Company
NASA is putting a nuclear reactor on the moon. It could reshape space governance
The first space race was about flags and footprints. Now, decades later, landing on the moon is old news. The new race is to build there, and doing so hinges on power. In April 2025, China reportedly unveiled plans to build a nuclear power plant on the moon by 2035. This plant would support its planned international lunar research station. The United States countered in August, when acting NASA Administrator Sean Duffy reportedly suggested a U.S. reactor would be operational on the moon by 2030. While it might feel like a sudden sprint, this isn't exactly breaking news. NASA and the Department of Energy have spent years quietly developing small nuclear power systems to power lunar bases, mining operations, and long-term habitats. As a space lawyer focused on long-term human advancement into space, I see this not as an arms race but as a strategic infrastructure race. And in this case, infrastructure is influence. A lunar nuclear reactor may sound dramatic, but it's neither illegal nor unprecedented. If deployed responsibly, it could allow countries to peacefully explore the moon, fuel their economic growth, and test out technologies for deeper space missions. But building a reactor also raises critical questions about access and power. The legal framework already exists Nuclear power in space radioisotope generators that use small amounts of radioactive elements—a type of nuclear fuel— to power satellites, Mars rovers, and the Voyager probes. The United Nations' 1992 Principles Relevant to the Use of Nuclear Power Sources in Outer Space, a nonbinding resolution, recognizes that nuclear energy may be essential for missions where solar power is insufficient. This resolution sets guidelines for safety, transparency, and international consultation. Nothing in international law prohibits the peaceful use of nuclear power on the moon. But what matters is how countries deploy it. And the first country to succeed could shape the norms for expectations, behaviors, and legal interpretations related to lunar presence and influence. Why being first matters The 1967 Outer Space Treaty, ratified by all major spacefaring nations including the U.S., China, and Russia, governs space activity. Its Article IX requires that states act with 'due regard to the corresponding interests of all other States Parties.' That statement means if one country places a nuclear reactor on the moon, others must navigate around it, legally and physically. In effect, it draws a line on the lunar map. If the reactor anchors a larger, long-term facility, it could quietly shape what countries do and how their moves are interpreted legally, on the moon and beyond. Other articles in the Outer Space Treaty set similar boundaries on behavior, even as they encourage cooperation. They affirm that all countries have the right to freely explore and access the moon and other celestial bodies, but they explicitly prohibit territorial claims or assertions of sovereignty. At the same time, the treaty acknowledges that countries may establish installations such as bases—and with that, gain the power to limit access. While visits by other countries are encouraged as a transparency measure, they must be preceded by prior consultations. Effectively, this grants operators a degree of control over who can enter and when. Building infrastructure is not staking a territorial claim. No one can own the moon, but one country setting up a reactor could shape where and how others operate—functionally, if not legally. Infrastructure is influence where ice found in perpetually shadowed craters could fuel rockets and sustain lunar bases. These sought-after regions are scientifically vital and geopolitically sensitive, as multiple countries want to build bases or conduct research there. Building infrastructure in these areas would cement a country's ability to access the resources there and potentially exclude others from doing the same. Critics may worry about radiation risks. Even if designed for peaceful use and contained properly, reactors introduce new environmental and operational hazards, particularly in a dangerous setting such as space. But the U.N. guidelines do outline rigorous safety protocols, and following them could potentially mitigate these concerns. Why nuclear? Because solar has limits The moon has little atmosphere and experiences 14-day stretches of darkness. In some shadowed craters, where ice is likely to be found, sunlight never reaches the surface at all. These issues make solar energy unreliable, if not impossible, in some of the most critical regions. A small lunar reactor could operate continuously for a decade or more, powering habitats, rovers, 3D printers, and life-support systems. Nuclear power could be the linchpin for long-term human activity. And it's not just about the Moon—developing this capability is essential for missions to Mars, where solar power is even more constrained. A call for governance, not alarm The United States has an opportunity to lead not just in technology but in governance. If it commits to sharing its plans publicly, following Article IX of the Outer Space Treaty and reaffirming a commitment to peaceful use and international participation, it will encourage other countries to do the same. The future of the moon won't be determined by who plants the most flags. It will be determined by who builds what, and how. Nuclear power may be essential for that future. Building transparently and in line with international guidelines would allow countries to more safely realize that future. A reactor on the moon isn't a territorial claim or a declaration of war. But it is infrastructure. And infrastructure will be how countries display power—of all kinds—in the next era of space exploration. Michelle L.D. Hanlon is a professor of air and space law at the University of Mississippi. The early-rate deadline for Fast Company's Most Innovative Companies Awards is Friday, September 5, at 11:59 p.m. PT. Apply today.


Washington Post
2 hours ago
- Washington Post
Race to build nuclear reactor on moon raises galaxy of legal questions
Accelerated plans announced by NASA this month for the United States to put a nuclear reactor on the moon ahead of its geopolitical rivals would break new ground — not just on the lunar surface, but in the realm of space law. The vastness of space is governed by long-standing legal frameworks, parts of which have yet to be tested. NASA's efforts in that realm raise thorny questions around those rules, and the possibility for conflict as countries vie for a stepping stone on the path to Mars and beyond, some experts say. Earlier this month, Sean P. Duffy, the acting administrator of NASA and the U.S. transportation secretary, asked NASA to accelerate efforts to place a nuclear reactor on the Moon by 2030. The reactor technology will 'support a future lunar economy, high power energy generation on Mars, and to strengthen our national security in space,' Duffy wrote in a directive first reported by Politico. The NASA chief cited growing pressure from China and Russia as a reason for urgency on the project. Since 2024, both countries have repeatedly affirmed their plan to jointly install a reactor on the moon by the mid-2030s. In his directive, Duffy wrote that the first country to place a nuclear energy source on the moon 'could declare a keep-out zone.' Although placing a nuclear reactor on the moon is not a new concept or a shocking leap for NASA — and the request for proposals calls for the construction of a rather small reactor — Duffy's framing of the move as relating to geopolitics and control raised questions among legal experts. 'There's a certain part of the moon that everyone knows is the best,' Duffy said in the news conference Tuesday. 'We want to get there first and claim that for America.' The United States' lunar activity is largely governed by the Outer Space Treaty, a legally binding agreement signed by all major moon faring nations in 1967, and the Artemis Accords, a set of nonbinding principles designed to guide civil space exploration launched in 2020. China and Russia are not signatories to the latter. Michelle Hanlon, the executive director for the Center for Air and Space Law at the University of Mississippi, said that certain clauses of the Outer Space Treaty have unintentionally created a first mover advantage for placing an energy source on the moon. Article 9 of the Outer Space Treaty says that nations have to conduct activities with 'due regard' for the activities of others, she said, adding that Article 12 outlines the need for state to ask permission to work in an area where another nation has an installation. 'Whoever gets there first has this implicit greater right to exclude than anybody else,' Hanlon said. 'This raises a question of what exactly 'due regard' means.' Neither the treaty nor the accords mention a 'keep-out zone.' In fact, the treaty prohibits all nations from claiming territory on the moon or any celestial bodies. The accords, meanwhile, outline a 'safety zone' — areas where nations can conduct space operations with the assurance that their personnel and equipment will be safe from other nations. The size, scope and duration of the safety zones are left vague, however. 'The only practical and legal provision is that if you land on a particular spot, then the Russians or whomever else would not be entitled to land so closely as to prevent an actual operating risk,' said Frans von der Dunk, a professor of space law at the University of Nebraska at Lincoln. If a nation claims more than a few kilometers as a 'safety zone,' other countries might begin to suspect that they aren't motivated by a desire for security but are instead using it as a 'sort of veiled approach to say everyone keeps out,' said von der Dunk. He added that it is too early to assess the proper size of a lunar safety zone, given how little is known about NASA's plans. The intention of the Outer Space Treaty, according to Erika Nesvold, an astrophysicist and author of 'Off-Earth: Ethical Questions and Quandaries for Living in Outer Space,' was to prevent misunderstandings and conflicts and accidents — not to help people 'looking to get a foothold for their nation's government or profit for their companies.' China is committed to 'the peaceful use of outer space,' said Liu Pengyu, a spokesman for China's embassy in Washington. 'China has no intention to engage in a space race, nor do we seek so-called edge in outer space.' Duffy's team forwarded The Washington Post's request for comment to NASA, which said in a statement that the nuclear reactor plans are meant to 'further advance U.S. competition and lunar surface leadership.' Bethany Stevens, a spokeswoman for the agency, said NASA would share additional details about the plans in the future. NASA has been eyeing areas around the moon's southern pole for science and exploration. There, the sun hovers below or just above the horizon in some parts, with looming mountains casting long shadows over the surface. Deep craters are expected to hold frozen water, an extremely valuable commodity in space. In his Tuesday news conference, Duffy pointed to the availability of ice and sunlight as motivating the push to 'claim' space on the moon. Even in sunlit regions of the South Pole area, solar panels would provide energy for only half the month because a night on the moon lasts roughly two weeks. Hanlon said that finding a nonsolar source of energy for rovers or even an eventual permanent human presence on the moon would be 'the right next step' for long-term lunar exploration efforts. 'We can't ship propane to the moon for energy,' she said. Though few details exist about the aim of the project, the request for proposals issued by Duffy calls on commercial companies to outline plans to build a reactor that could generate at least 100 kilowatts of power. 'That's the same amount of energy a 2,000-square foot home uses every 3½ days,' Duffy said Tuesday, describing the project's scale. 'We are not talking about massive technology.' Space experts are concerned that the urgency surrounding Artemis, NASA's return-to-the-moon program, is papering over a range of lunar legal issues. Nesvold, the astrophysicist, said there are concerns that racing to the moon could lead to a 'gold rush' mentality, conflicts over access to lunar resources, environmental losses and labor exploitation that would especially stem from the involvement of profit-motivated private companies mining on the moon. Edwin Lyman, a physicist and the director of nuclear power safety at the Union of Concerned Scientists, a nonprofit science advocacy organization in Washington, said 'undue speed is not a friend of nuclear power development,' adding that rushing the process could result in 'safety incidents and reliability issues.' Lyman also raised questions about what might be done with radioactive waste on the moon. 'That type of waste could persist for hundreds of years,' Lyman said. 'It's going to be a mess frankly.'