logo
NASA Budget Cuts Could Have A Martian Silver Lining

NASA Budget Cuts Could Have A Martian Silver Lining

Forbes10-07-2025
With its active volcanism, Iceland is often used as a stand in for the surface of Mars. Bruce Dorminey
Iceland is an astrobiologist's dream — rife with active volcanic landscapes, basaltic plains and lava tunnels that has repeatedly been used by NASA as a stand in for Mars. But at last week's European Astrobiology Institute's BEACON 25 conference in Reykjavik, most attendees were clamoring to get their hands on samples of the real thing.
NASA's Perseverance rover — now perched on the rim of Jezero Crater in Mars' southern highlands, has collected some 41 subsurface samples just waiting for a sample return mission to retrieve them back to Earth. But that doesn't seem likely to happen anytime soon.
Yet at least one planetary scientist refuses to be hamstrung by focusing on the funding hole in the Martian sample return donut. That's because even if there's a decades-long delay in getting the samples back to Earth, Perseverance's Radioisotope Thermoelectric Generator has plenty of life left and can potentially use the time to explore beyond Jezero Crater's rim.
Perseverance has dropped samples on the crater floor, but it has more samples now from the rim in its storage cache, Adomas Valantinas, a Brown University planetary scientist, tells me in Reykjavik. But it would have to return back to the crater floor, where the lander from the Mars sample return mission would touch down, because it's flat and is a good area for landing with no strong winds, he says.
Thus, in what could be a bit of serendipity, if the sample return is postponed indefinitely, Perseverance is free to roam beyond the rim of Jezero Crater.
Why beyond the rim?
Beyond the crater rim, there is this area called Nili Planum, a flat terrain that contains a lot of volcanic minerals, says Valantinas. If you go 30 to 50 km south, also beyond the rim in the northeast Syrtis region there are a lot of minerals that could have been formed by hydrothermal activity, he says. So, going south beyond the rim, you also have rocks that are potentially 4.1-billion-years-old where the potential for a habitable environment was even greater, says Valantinas.
As noted in his Reykjavik presentation, Valantinas and colleagues' findings have specifically been researching the 3.8-billion-year-old, 45-km-wide Jezero impact crater. The Jezero impactor hit about the same time that life first formed on Earth and when liquid water was stable on the Martian surface.
We used observations from NASA's Mars Reconnaissance Orbiter to understand the composition of the Jezero Crater rim, and we also did numerical simulations to understand how materials moved post impact and where they were deposited, says Valantinas. Ancient Rocks
Our study basically shows that the materials in the Jezero rim are diverse, and they may represent a habitable environment 3.8 billion years ago, because they not only contain primary minerals, but secondary alteration minerals when liquid water was present, says Valantinas.
Why is geological diversity important?
Diversity probably means more complex mineralogy and more complex chemistry, which could mean a more habitable environment, says Valantinas. If we were seeing the same three or four different minerals and no diversity in the composition, that would probably mean it wasn't a habitable environment, he says.
What kind of atmosphere did Mars have when the Jezero impactor hit?
The atmosphere was probably thick enough for liquid water to exist on the surface, says Valantinas. So, it probably had some nitrogen, carbon dioxide and probably some water vapor, he says.
Perseverance has already found some of the oldest rocks ever sampled on the Martian surface. But we need to push the envelope of what we really understand about the history of the red planet, which has both frustrated and perplexed even its most ardent advocates. That's why retrieving these samples for analysis in the best labs the world has to offer is so crucial to humanity's understanding of solar system science.
Icelandic landscape near the boundary between the North American and Eurasian tectonic plates. Bruce Dorminey Radiation Threat
There's also the potential that a decades-long delay in retrieving the samples that the Perseverance rover has collected could be affected by incoming cosmic radiation. Most of the samples are now safely positioned inside the rover but there are others that have been left on the surface near the landing site of a future sample return mission.
The idea being that if for whatever reason, the rover malfunctions and can't make it back to the Jezero Crater basin, there would still be a few samples prepositioned on the surface which a return lander could retrieve for the journey back to Earth.
Perseverance collected the samples themselves using a coring mechanism to a depth of only about 7 cm in depth. But now these sample cores are above ground they are much more susceptible to the effects of surface radiation.
Even at 7 cm of subsurface depth, you must think about corpuscular (subatomic particle) radiation and galactic radiation, which is also bombarding the surface, Jean-Pierre De Vera, a planetary scientist at the German Aerospace Center (DLR), tells me in Reykjavik. And after several years inside the rover on the surface, the samples' original subsurface organics could certainly be changed, says De Vera.
I'll be in the Icelandic Highlands for a week sampling iron oxide minerals in every kind of environment, from cold springs to hot springs and rivers, says Valantinas. The idea is to use Iceland as an analog for processes that could have happened on ancient Mars, he says.
Why is Iceland better than anywhere else?
Iceland is a volcanic island with basalt as a kind of the bedrock material, says Valantinas. So, the weathering of the basalts leads to secondary minerals in Iceland, and similar secondary minerals are observed on Mars, he says.
Meanwhile, astrobiologists worldwide are hoping that the Mars samples can find their way back to Earth in a timely manner.
As for why the Mars is so important to astrobiology?
We're busy looking for life on exoplanets and we have Mars here that's within reach, Benton Clark, senior research geochemist at the Space Science Institute in Boulder, Colo. tells me in Reykjavik. All we need to do is to bring those samples back and we're going to learn so much more; maybe detect evidence of life, says Clark. Forbes Why Europe May Beat NASA To Life On Mars By Bruce Dorminey Forbes How NASA Can Avoid A False Positive Mars Microfossil Detection By Bruce Dorminey
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

The asteroid that will spare Earth might hit the moon instead. What happens if it does?
The asteroid that will spare Earth might hit the moon instead. What happens if it does?

Yahoo

time25 minutes ago

  • Yahoo

The asteroid that will spare Earth might hit the moon instead. What happens if it does?

The asteroid known as 2024 YR4 is out of sight yet still very much on scientists' minds. The building-sized object, which initially appeared to be on a potential collision course with Earth, is currently zooming beyond the reach of telescopes on its orbit around the sun. But as scientists wait for it to reappear, its revised trajectory is now drawing attention to another possible target: the moon. Discovered at the end of 2024, the space rock looked at first as if it might hit our planet by December 22, 2032. The chance of that impact changed with every new observation, peaking at 3.1% in February — odds that made it the riskiest asteroid ever observed. Ground- and space-based telescope observations were crucial in helping astronomers narrow in on 2024 YR4's size and orbit. With more precise measurements, researchers were ultimately able to rule out an Earth impact. The latest observations of the asteroid in early June, before YR4 disappeared from view, have improved astronomers' knowledge of where it will be in seven years by almost 20%, according to NASA. That data shows that even with Earth avoiding direct impact, YR4 could still pose a threat in late 2032 by slamming into the moon. The impact would be a once-in-a-lifetime event for humanity to witness — but it could also send fine-grained lunar material hurtling toward our planet. While Earth wouldn't face any significant physical danger should the asteroid strike the moon, there is a chance that any astronauts or infrastructure on the lunar surface at that time could be at risk — as could satellites orbiting our planet that we depend on to keep vital aspects of life, including navigation and communications, running smoothly. Any missions in low-Earth orbit could also be in the pathway of the debris, though the International Space Station is scheduled to be deorbited before any potential impact. Initially, YR4 was seen as a case study in why scientists do the crucial work of planetary defense, discovering and tracking asteroids to determine which ones have a chance of colliding with Earth. Now, astronomers say this one asteroid could redefine the range of risks the field addresses, expanding the purview of the work to include monitoring asteroids that might be headed for the moon as well. 'We're starting to realize that maybe we need to extend that shield a little bit further,' said Dr. Paul Wiegert, a professor of astronomy and physics at the Western University in London, Ontario. 'We now have things worth protecting that are a bit further away from Earth, so our vision is hopefully expanding a little bit to encompass that.' In the meantime, researchers are assessing just how much chaos a potential YR4 lunar impact could create — and whether anything can be done to mitigate it. 'City killer' on the moon The threatening hunk of rock appears as just a speck of light through even the strongest astronomical tools. In reality, YR4 is likely about 60 meters (about 200 feet) in diameter, according to observations in March by the James Webb Space Telescope, the most powerful space-based observatory in operation. 'Size equals energy,' said Julien de Wit, associate professor of planetary sciences at the Massachusetts Institute of Technology, who observed YR4 with Webb. 'Knowing YR4's size helped us understand how big of an explosion it could be.' Astronomers believe they have found most of the near-Earth asteroids the field would classify as 'planet killers' — space rocks that are 1 kilometer (0.6 mile) across or larger and could be civilization-ending, said Dr. Andy Rivkin, planetary astronomer from the Johns Hopkins University's Applied Physics Laboratory in Maryland. The planet killer that slammed into Earth 66 million years ago and led to the extinction of dinosaurs was estimated to be roughly 6 miles (about 10 kilometers) in diameter. Smaller asteroids such as YR4, which was colloquially dubbed a 'city killer' after its discovery, could cause regional devastation if they collide with our planet. About 40% of near-Earth space rocks larger than 140 meters (460 feet) but smaller than a kilometer — capable of more widespread destruction — have been identified, according to NASA. But astronomers have never really had a chance to watch a collision of that size occur on the moon in real time, Wiegert said. The latest glimpses of YR4 on June 3 before it passed out of view revealed a 4.3% chance of a YR4 lunar impact — small but decent enough odds for scientists to consider how such a scenario might play out. A striking meteor shower — and a risk Initial calculations suggest the impact has the largest chance of occurring on the near side of the moon — the side we can see from Earth. 'YR4 is so faint and small we were able to measure its position with JWST longer than we were able to do it from the ground,' said Rivkin, who has been leading the Webb study of YR4. 'And that lets us calculate a much more precise orbit for it, so we now have a much better idea of where it will be and won't be.' The collision could create a bright flash that would be visible with the naked eye for several seconds, according to Wiegert, lead author of a recent paper submitted to the American Astronomical Society journals analyzing the potential lunar impact. The collision could create an impact crater on the moon estimated at 1 kilometer wide (0.6 miles wide), Wiegert said — about the size of Meteor Crater in Arizona, Rivkin added. It would be the largest impact on the moon in 5,000 years and could release up to 100 million kilograms (220 million pounds) of lunar rocks and dust, according to the modeling in Wiegert's study. Even pieces of debris that are just tens of centimeters in size could present a hazard for any astronauts who may be present on the moon, or any structures they have built for research and habitation, Wiegert said. The moon has no atmosphere, so the debris from the event could be widespread on the lunar surface, he added. On average, the moon is 238,855 miles (384,400 kilometers) away from Earth, according to NASA. Particles the size of large sand grains, ranging from 0.1 to 10 millimeters in size, of lunar material could reach Earth between a few days and a few months after the asteroid strike because they'll be traveling incredibly fast, creating an intense, eye-catching meteor shower, Wiegert said. 'There's absolutely no danger to anyone on the surface,' Wiegert said. 'We're not expecting large boulders or anything larger than maybe a sugar cube, and our atmosphere will protect us very nicely from that. But they're traveling faster than a speeding bullet, so if they were to hit a satellite, that could cause some damage.' Not all lunar debris that reaches the Earth is so small, and it depends on the angle and type of impact to the moon, according to Washington University in St. Louis. Space rocks slamming into the lunar surface over millions of years have resulted in various sizes of lunar meteorites found on Earth. Preparing for impact Hundreds to thousands of impacts from millimeter-size debris could affect Earth's satellite fleet, meaning satellites could experience up to 10 years' equivalent of meteor debris exposure in a few days, Wiegert said. Humankind depends on vital space infrastructure, said Dan Oltrogge, chief scientist at COMSPOC, a space situational awareness software company that develops solutions for handling hazards such as space debris. 'Space touches almost every aspect of our lives today, ranging from commerce, communications, travel, industry, education, and social media, so a loss of access to and effective use of space presents a serious risk to humanity,' Oltrogge said. The event is unlikely to trigger a Kessler Syndrome scenario in which debris from broken satellites would collide with others to create a domino effect or fall to Earth. Instead, it might be more akin to when a piece of gravel strikes a car windshield at high speed, meaning solar panels or other delicate satellite parts might be damaged, but the satellite will remain in one piece, Wiegert said. While a temporary loss of communication and navigation from satellites would create widespread difficulties on Earth, Wiegert said he believes the potential impact is something for satellite operators, rather than the public, to worry about. Protecting Earth and the moon Scientists and astronomers around the world are thinking about the possible scenarios since they could not rule out a lunar impact before YR4 disappeared from view, Wiegert said. 'We realize that an impact to the moon could be consequential, so what would we do?' de Wit said. A potential planetary defense plan might be clearer if the asteroid were headed straight for Earth. Rivkin helped test one approach in September 2022 as the principal investigator of NASA's Double Asteroid Redirection Test, or DART, which intentionally slammed a spacecraft into the asteroid Dimorphos in September 2022. Dimorphos is a moonlet asteroid that orbits a larger parent asteroid known as Didymos. Neither poses a threat to Earth, but the double-asteroid system was a perfect target to test deflection technology because Dimorphos' size is comparable to asteroids that could harm our planet in the event of an impact. The DART mission crashed a spacecraft into the asteroid at 13,645 miles per hour (6 kilometers per second) to find out whether such a kinetic impact would be enough to change the motion of a celestial object in space. It worked. Since the day of the collision, data from ground-based telescopes has revealed that the DART spacecraft did alter Dimorphos' orbital period — or how long it takes to make a single revolution around Didymos — by about 32 or 33 minutes. And scientists have continued to observe additional changes to the pair, including how the direct hit likely deformed Dimorphos due to the asteroid's composition. Similarly, if YR4 strikes the moon and doesn't result in damaging effects for satellites, it could create a tremendous opportunity for researchers to learn how the lunar surface responds to impacts, Wiegert said. But whether it would make sense to send a DART-like mission to knock YR4 off a collision course with the moon remains to be seen. It will depend on future risk assessments by planetary defense groups when the asteroid comes back into view around 2028, de Wit said. Though defense plans for a potential moon impact still aren't clear, YR4's journey underscores the importance — and the challenges — of tracking objects that are often impossible to see. Hidden threats YR4 was detected by the Asteroid Terrestrial-impact Last Alert System, or ATLAS telescope, in Río Hurtado, Chile, two days after the asteroid had already made its closest pass by Earth, hidden by the bright glare of the sun as it approached our planet. The same thing occurred when an asteroid measuring roughly 20 meters (about 65 feet) across hit the atmosphere and exploded above Chelyabinsk, Russia, on February 15, 2013, damaging thousands of buildings, according to the European Space Agency. While no one died, about 1,500 people were injured when the windows in homes and businesses blew out due to the shock wave. Trying to observe asteroids is challenging for many reasons, Rivkin said. Asteroids are incredibly faint and hard to see because rather than emitting their own light, they only reflect sunlight. And because of their relatively tiny size, interpreting observations is not a clear-cut process like looking through a telescope at a planet such as Mars or Jupiter. 'For asteroids, we only see them as a point of light, and so by measuring how bright they are and measuring their temperature, basically we can get a size based on how big do they have to be in order to be this bright,' Rivkin said. For decades, astronomers have had to search for faint asteroids by night, which means missing any that may be on a path coming from the direction of the sun — creating the world's biggest blind spot for ground-based telescopes that can't block out our star's luminosity. But upcoming telescopes — including NASA's NEO Surveyor expected to launch by the end of 2027 and the European Space Agency's Near-Earth Object Mission in the InfraRed, or NEOMIR satellite, set for liftoff in the early 2030s — could shrink that blind spot, helping researchers detect asteroids much closer to the sun. 'NEOMIR would have detected asteroid 2024 YR4 about a month earlier than ground-based telescopes did,' said Richard Moissl, head of ESA's Planetary Defence Office, in a statement. 'This would have given astronomers more time to study the asteroid's trajectory and allowed them to much sooner rule out any chance of Earth impact in 2032.' NASA and other space agencies are constantly on the lookout for potentially hazardous asteroids, defined as such based on their distance from Earth and ability to cause significant damage should an impact occur. Asteroids that can't get any closer to our planet than one-twentieth of Earth's distance from the sun are not considered to be potentially hazardous asteroids, according to NASA. When the new Vera C. Rubin Observatory, located in the Andes in Chile, released its first stunning images of the cosmos in June, researchers revealed the discovery of more than 2,100 previously unknown asteroids after seven nights of those newly detected space rocks, seven were near-Earth objects. A near-Earth object is an asteroid or comet on an orbit that brings it within 120 million miles (about 190 million kilometers) of the sun, which means it has the potential to pass near Earth, according to NASA. None of the new ones detected by Rubin were determined to pose a threat to our planet. Rubin will act as a great asteroid hunter, de Wit said, while telescopes such as Webb could be a tracker that follow up on Rubin's discoveries. A proposal by Rivkin and de Wit to use Webb to observe YR4 in the spring of 2026 has just been approved. Webb is the only telescope with a chance of glimpsing the asteroid before 2028. 'This newly approved program will buy decision makers two extra years to prepare — though most likely to relax, as there is an 80% chance of ruling out impact — while providing key experience-based lessons for handling future potential impactors to be discovered by Vera Rubin,' de Wit said. And because of the twists and turns of YR4's tale thus far, asteroids that have potential to affect the moon could become objects of even more intense study in the future. 'If this really is a thing that we only have to worry about every 5,000 years or something, then maybe that's less pressing,' Rivkin said. 'But even just asking what would we do if we did see something that was going to hit the moon is at least something that we can now start thinking about.' Sign up for CNN's Wonder Theory science newsletter. Explore the universe with news on fascinating discoveries, scientific advancements and more. Solve the daily Crossword

Scientists Just Linked This Diet to a Lower Lung Cancer Risk
Scientists Just Linked This Diet to a Lower Lung Cancer Risk

Yahoo

timean hour ago

  • Yahoo

Scientists Just Linked This Diet to a Lower Lung Cancer Risk

Reviewed by Dietitian Jessica Ball, M.S., RD At this point, you've likely heard about the Mediterranean diet, the DASH diet and the MIND diet. But there's one diet that might be new to you: the planetary health diet (PHD). The PHD was developed in 2019 by the EAT-Lancet Commission and focuses on promoting human health and environmental sustainability. The planetary health diet is primarily plant-based, focusing on fruits, vegetables, nuts, seeds, legumes, whole grains and unsaturated fats. It includes small amounts of animal-based proteins, including seafood, poultry and dairy, but these are eaten in much smaller quantities, as most protein comes from plant protein. Added sugars, refined grains and processed meats are limited or avoided. Research regarding the planetary health diet has been mixed, so researchers from Austria and Switzerland wanted to see what they could find out about the relationship between the planetary health diet and mortality, cancer and heart disease. They published their results in the American Journal of Clinical Nutrition. How Was This Study Conducted? Researchers drew their data from the UK Biobank, a long-running study that collects demographic, health and medical data from over 500,000 UK citizens. Baseline data were gathered between 2006 and 2010, with the average age at baseline ranging from 40 to 69. Assessments were repeated every few years and collected data on lifestyle, health status and diet. Researchers also had access to medical records and death registries. For this current study, researchers used varying numbers of participants for three different analyses: almost 205,000 were used in the mortality risk analyses, over 200,000 for the cancer risk analyses, and over 196,000 for the cardiovascular disease risk analyses. Adherence to the planetary health diet eating pattern was scored based on the inclusion of 14 primary food components of the planetary health diet. Participants scored one point for each food or food group they included, with a possible high score of 14. Scores for this study ranged from 1 to 11 points, which represents low to medium diet adherence. What Did This Study Find? After running statistical analyses, including adjusting for potential confounding factors (factors that might influence or change results), researchers found that: Every 1-point increase in the PHD score was related to a 3% decrease in all-cause mortality (risk of dying from anything). Every 1-point increase in the PHD score was associated with a 9% lower lung cancer risk. When all factors were fully adjusted for, no relationship was found in this study between the PHD and cardiovascular disease risk. There were several limitations of this study. Because comparatively few people in the Biobank were following a planetary health diet eating pattern, the confidence of these results is lower than it would have been had there been more people following it. Also, out of the five possible Biobank 24-hour dietary recalls, about 40% of the participants completed just one of them. Again, less data means less confidence in the results. And since the Biobank includes mostly white adults from Europe, it is unknown if the results can be generalized to other groups. How Does This Apply to Real Life? The term 'plant-based diet' can mean different things to different people. While some equate it to a vegan, all-plant diet, others see it more as making plants the foundation of your diet, while still including small amounts of animal-based foods, like eggs, dairy, fish and poultry. The latter is what the planetary health diet is about. It also limits added sugar, refined grains and processed meats. Eating more plants has many benefits, including reduced disease risk. This is in part thanks to plants' antioxidants and their ability to create a healthy gut microbiome by providing food for your gut's beneficial bacteria. A healthy gut can help lower chronic inflammation, which helps reduce disease risk. And while you can add helpful bacteria to your gut with fermented plants—like sauerkraut or kimchi—many people find it easier to get them in yogurt or kefir, which is where the animal protein can come in. It's easy to get stuck in a rut with fruits and vegetables, or to always turn to bread for whole grains. But there are lots of creative ways to use whole grains—like rice, quinoa, farro and oats—that don't include bread. Grain bowls are a delicious way to eat more plants, and they can be tailored to your taste and preferences. They're also easy to meal-prep for lunches throughout the week. We also love salads as meals. You can pack every food group into a salad if you want to. You'll love our filling, satisfying High-Protein Pasta Salad, Massaged Kale Salad with Roasted Sweet Potato & Black Beans or Salmon Salad with Crispy White Beans. If you want more guidance and are ready to go all in on increasing your plant intake, check out our 7-Day Plant-Based High-Protein Meal Plan for Beginners. It's loaded with a variety of fruits, vegetables, whole grains and plant-based proteins, like peanut butter, edamame and beans, to keep you full and satisfied. Whether you use the plan as is or use it as inspiration, you'll find it fun and easy to get more plants into your meals and snacks. Our Expert Take This study suggests that eating more plants may reduce your risk of all-cause mortality and lung disease. While this study didn't show an association between eating a plant-based diet and reduced risk of heart disease, other studies have. Just remember that eating more plants doesn't have to be all or nothing. Start where you're at and be intentional with choosing plant-based foods more often. Snacks can be an easy way to start. Instead of reaching for your typical snack, try a handful of nuts and a piece of fruit, or dip fruit slices into nut butter or veggie sticks into guacamole or hummus. Read the original article on EATINGWELL

Neither Scales Nor Feathers: Bizarre Appendage Discovered on Reptile Fossil
Neither Scales Nor Feathers: Bizarre Appendage Discovered on Reptile Fossil

Yahoo

time2 hours ago

  • Yahoo

Neither Scales Nor Feathers: Bizarre Appendage Discovered on Reptile Fossil

A bizarre reptile once scurried through the Triassic treetops with an extravagant crest on its back, one made from neither scale, nor bone, nor feather. The extinct creature's 247-million-year-old fossils immediately stood out to paleontologists. The impressive appendage on its back looks like a frill of overlapping feathers at first glance, but it's much older than the earliest fossilized feather, and there's no branching to indicate a plume. The elaborate structure also lacks bony spines, such as those seen in later dinosaurs, like Spinosaurus. Related: "This had to be something new," Stuttgart State Museum of Natural History paleontologist Stephan Spiekman told ScienceAlert. "Prior to our discovery, complex outgrowths from the skin were restricted to mammals and birds and their closest relatives, predominantly in the form of feathers and hair. "We now have another, different type of complex appendage, in a very early reptile." Long before dinosaurs evolved plumage, it appears that some early reptiles were already putting together a genetic toolkit for complex appendages. The dorsal crests discovered by Spiekman and his colleagues are "basically novel to science", so they don't yet have a name. In their study, the researchers essentially refer to them as skin outgrowths, but they aren't actually similar to reptile skin. Spiekman thinks the outgrowths may be made of keratin, similar to nails, hairs, scales, or claws. Confirming that suspicion will require further analysis. Altogether, Spiekman and his colleagues studied more than 80 fossils of the outgrowths, recently donated to the State Museum of Natural History in Stuttgart, Germany. The vast majority had lost their corresponding skeletons; only one of the fossils featured the bird-like skull of a small, ancient reptile. The extinct animal has been named Mirasaura grauvogeli, the first part of which means 'wonderous reptile'. Technically, the species is a drepanosaur – a small, early reptile that lived in the trees, hunting insects with its velociraptor-like claws. But its crest is the real stand-out feature. "Mirasaura developed an alternative to feathers very early in Earth's history, long before the dinosaurs, which we did not expect and which will stimulate discussion and research," says reptile paleontologist Rainer Schoch, from the State Museum of Natural History in Stuttgart. The exact function of the Mirasaura's dorsal appendage is unknown, but based on the physics, it probably wasn't used for flight or insulation. A role in visual communication, such as predator deterrence or intraspecies signaling, is more likely. The best preserved Mirasaura fossils were found to contain traces of melanosomes, which are organelles within pigment cells. Interestingly, their geometry is consistent with the melanosomes that color feathers, but not those found in reptile skin or mammal hair. "Mirasaura really shows how surprising evolution can be, and how much we can still learn from palaeontology," Spiekman told ScienceAlert. "We already knew from genetics and developmental biology that much of the pathway to form feathers, hairs, and scales, is shared between mammals, reptiles, and birds. Now, with Mirasaura, we can say that such complex structures did indeed grow in other animals, too." Turns out, reptiles aren't the scaly, simple animals we often paint them out to be. They deserve more credit. The study was published in Nature. Related News America's Largest Crater Has Surprise Link to Grand Canyon, Study Finds 500-Million-Year-Old Fossil Suggests Ocean Origin For Spiders Secret Bone Armor Discovered Beneath Skins of Australian Lizards Solve the daily Crossword

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store