logo
Scientists Intrigued by Galactic Structure That's 1.4 Billion Light-Years Wide

Scientists Intrigued by Galactic Structure That's 1.4 Billion Light-Years Wide

Yahoo09-03-2025

Scientists say they've uncovered the "largest known galactic structure" — a cosmic monster that spans a mind-boggling 1.4 billion light-years, which is around 14,000 times the diameter of our own Milky Way galaxy.
The team, led by scientists from the Max Planck Institute for Physics, made the discovery after analyzing data as part of the ROSAT X-ray satellite sky survey.
They found that the structure — dubbed "Quipu" after strings with knots used by the Incas for bookkeeping — stretched across huge swathes of the night sky. The team believes it's largely composed of dark matter, the invisible substance believed to account for 85 percent of all mass in the universe.
The finding could have considerable implications for our understanding of the larger structures lurking in the universe and how to accurately map them.
"If you look at the distribution of the galaxy clusters in the sky in a spherical shell with a distance of 416 to 826 million light-years, you immediately notice a huge structure that stretches from high northern latitudes to almost the southern end of the sky," said project lead and Max Planck Institute associate professor Hans Böhringer in a statement.
Quipu's immense length appears to break the previous record set by the "Sloan Great Wall," which stretches around 1.1 billion light years in a much more distant part of the universe.
But as Live Science points out, there might be even larger structures still, such as the Hercules Corona-Borealis Great Wall, a superstructure that spans an estimated 10 billion light-years across, another 10 billion light-years from Earth. Whether it indeed exists, however, remains a topic of contention among scientists.
For their latest study, accepted for publication in the journal Astronomy and Astrophysics, the Max Planck team analyzed an expansive catalogue of galaxy clusters, which was created using data collected by the Max Planck Institute for extraterrestrial Physics' ROSAT X-ray satellite in 1990.
Apart from Quipu, the team also discovered three other superstructures they're calling the Serpens-Corona Borealis, the Hercules, and the Sculptor-Pegasus.
In addition to Quipu and the Shapley supercluster, a concentration of galaxies in our nearby universe, the five structures contain an estimated 25 percent of all the matter in the observable universe, according to the researchers, or 13 percent of its volume.
The team argued in its paper that the findings could be "important for astrophysical research," such as the "study of the environmental dependence of galaxy evolution as well as for precision tests of cosmological models."
The researchers also suggest these superstructures won't stick around forever.
"In the future cosmic evolution, these superstructures are bound to break up into several collapsing units," they concluded in their paper. "They are thus transient configurations. But at present they are special physical entities with characteristic properties and special cosmic environments deserving special attention."
More on superstructures: Scientists Working to Explain "Superstructures" on Ocean Floor

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Incredible behaviour of tiny creatures filmed in world-first: 'Beauty overrides the disgust'
Incredible behaviour of tiny creatures filmed in world-first: 'Beauty overrides the disgust'

Yahoo

time2 days ago

  • Yahoo

Incredible behaviour of tiny creatures filmed in world-first: 'Beauty overrides the disgust'

In a world-first, tiny worms have been filmed building towers so they can latch onto passing insects. The strategy has been developed to avoid fierce competition when food runs out, allowing them to travel large distances and find new locations to plunder. Although most people have never heard of nematode worms, they've probably accidentally eaten one. As a group, they are the most abundant creatures on Earth, and the species at the centre of the study are just 1mm-long and prey on bacteria that grows on rotting apples and pears. The research was conducted by the Max Planck Institute of Animal Behaviour, which dubbed the behaviour a 'rare example of collective hitchhiking in nature' because only slime moulds, fire ants, and spider mites had been known to operate like this. The worms slither over each other, spiralling their bodies to form a living tower which can sense touch as insects brush by, causing them to detach. The study's group leader, Dr Serena Ding spoke to Yahoo News Australia from her lab in Germany this week, explaining that without their insect hosts, the worms would struggle to travel large distances because their moist bodies would dry out and they'd die. Ding finds the nematodes 'beautiful', although she's well aware that others find them gross. 'I can understand that reaction as well, I've had that reaction to other kinds of worms,' she said. Related: 🦟 'Unimaginable' theory emerges about desolate continent Others have also clearly seen the beauty in the translucent nematode species she's studying – its name C. elegans relates to its 'elegant movement'. 'To me, they're not the disgusting type. When they come together to give you beautiful patterns, and fascinating behaviour to look at the beauty side overrides the disgust,' she said. 📸 Tourists to see 'extinct' animals behind national park's 25km predator-free fence 🚨 281 experts call for ban of 'toxic' product sold at Coles, Bunnings, Woolworths, Mitre 10 😳 Beach find highlights dark side of Queensland's $88 million tourism pledge It had long been known that nematodes created towers, but this is the first time the behaviour had been studied in detail. The Max Planck team first observed the worms forming themselves into a superorganism in an orchard and then waving in unison, trying to find a passing fruit fly. 'For so long natural worm towers existed only in our imaginations. But with the right equipment and lots of curiosity, we found them hiding in plain sight,' Ding said ahead of the paper's release. Postdoctoral Researcher Daniela Perez then collected nematodes to film them in her lab. Within two hours of placing them in a food-free environment they began to form towers, which were capable of standing for 12 hours. During this time they would form exploratory arms and bridges to reach new spaces. 'A nematode tower is not just a pile of worms. It's a coordinated structure, a superorganism in motion,' Perez said. 'The towers are actively sensing and growing. When we touched them, they responded immediately, growing toward the stimulus and attaching to it,' she added. Love Australia's weird and wonderful environment? 🐊🦘😳 Get our new newsletter showcasing the week's best stories.

Doctors near HIV cure with ‘previously impossible' discovery: ‘We have never seen anything close to as good'
Doctors near HIV cure with ‘previously impossible' discovery: ‘We have never seen anything close to as good'

New York Post

time4 days ago

  • New York Post

Doctors near HIV cure with ‘previously impossible' discovery: ‘We have never seen anything close to as good'

An estimated 39 million people around the world are living with HIV — and, while treatment options can ensure they have long, healthy lives, there is no known cure. Antiretroviral therapy (ART) — the most effective current treatment — can reduce HIV levels in the body so low the virus is almost undetectable. An estimated 39 million people around the world are living with HIV. dpa/picture alliance via Getty Images However, the fact that the virus can hide in certain white blood cells has been a major hurdle in fully eradicating it. Now, researchers in Australia have developed a novel lipid nanoparticle, dubbed LNP X, capable of delivering mRNA into these elusive cells. Once inside, the mRNA instructs the cells to reveal the concealed virus, potentially allowing the immune system or additional therapies to target and destroy it. Paula Cevaal, research fellow at the Doherty Institute and co-first author of the study, told the Guardian that this remarkable scientific feat was 'previously thought impossible.' 'In the field of biomedicine, many things eventually don't make it into the clinic — that is the unfortunate truth; I don't want to paint a prettier picture than what is the reality,' Cevaal said. Researchers in Australia have developed a novel lipid nanoparticle, dubbed LNP X, capable of delivering mRNA into white blood cells harboring HIV (pictured here). Corona Borealis – 'But in terms of specifically the field of HIV cure, we have never seen anything close to as good as what we are seeing, in terms of how well we are able to reveal this virus,' Cevaal added. 'So from that point of view, we're very hopeful that we are also able to see this type of response in an animal, and that we could eventually do this in humans.' The results were published last week in the journal Nature Communications. While it could take years to get to human clinical trials — the implications are enormous. The findings add to the latest scientific advancements that suggest a cure for HIV could be on the horizon. Last year, researchers in Amsterdam used gene-editing technology to eliminate all traces of the virus from cells in the laboratory. And last July, a 60-year-old German man was declared HIV-free, making him the seventh person to be cured.

First evidence of ‘living towers' made of worms discovered in nature
First evidence of ‘living towers' made of worms discovered in nature

CNN

time4 days ago

  • CNN

First evidence of ‘living towers' made of worms discovered in nature

Nature seems to offer an escape from the hustle and bustle of city life, but the world at your feet may tell another story. Even in the shade of a fruit tree, you could be surrounded by tiny skyscrapers — not made of steel or concrete, but of microscopic worms wriggling and writhing into the shape of long, vertical towers. Even though these miniature architects, called nematodes, are found all over Earth's surface, scientists in Germany recently witnessed their impressive building techniques in nature for the first time. After months of closely inspecting rotten pears and apples in local orchards, researchers from the Max Planck Institute of Animal Behavior and the University of Konstanz were able to spot hundreds of the 1-millimeter-long (0.04-inch) worms climbing onto one another, amassing structures up to 10 times their individual size. Related video Rare video shows 12 sharks co-feed socially To learn more about the mysterious physics of the soft, slimy towers, the study team brought samples of nematodes called Caenorhabditis elegans into a lab and analyzed them. There, the scientists noticed the worms could assemble in a matter of hours, with some reaching out from the twisting mass as exploratory 'arms' sensing the environment and building accordingly. But why the worms formed the structures wasn't immediately clear. The team's findings, published Thursday in the journal Current Biology, show that even the smallest animals can prompt big questions about the evolutionary purpose of social behaviors. 'What we got was more than just some worms standing on top of each other,' said senior study author Serena Ding, a Max Planck research group leader of genes and behavior. 'It's a coordinated superorganism, acting and moving as a whole.' To find out what was motivating the nematodes' building behavior, the study team tested the worms' reactions to being poked, prodded and even visited by a fly — all while stacked in a tower formation. 'We saw that they are very reactive to the presence of a stimulus,' said the study's first author, Daniela Perez, who is a postdoctoral researcher at the Max Planck Institute of Animal Behavior. 'They sense it, and then the tower goes towards this stimulus, attaching itself to our metal pick or a fly buzzing around.' This coordinated reaction suggests the hungry nematodes may be joining together to easily hitch a ride on larger animals such as insects that transport them to (not so) greener pastures with more rotten fruit to feast on, Perez said. 'If you think about it, an animal that is 1 millimeter long cannot just crawl all the way to the next fruit 2 meters (6.6 feet) away. It could easily die on the way there, or be eaten by a predator,' Perez explained. Nematodes are capable of hitchhiking solo too, she added, but arriving to a new area in a group may allow them to continue reproducing. The structures themselves may also serve as a mode of transport, as evidenced by how some worms formed bridges across gaps within the petri dishes to get from one surface to another, Perez noted. 'This discovery is really exciting,' said Orit Peleg, an associate professor of computer science who studies living systems at the University of Colorado Boulder's BioFrontiers Institute. 'It's both establishing the ecological function of creating a tower, and it really opens up the door to do more controlled experimentation to try to understand the perceptual world of these organisms, and how they communicate within a large group.' Peleg was not involved in the study. As the next step, Perez said her team would like to learn whether the formation of these structures is a cooperative or competitive behavior. In other words, are the towering nematodes behaving socially to help each other out, or are their towers more akin to a Black Friday sale stampede? Studying the behaviors of other self-assembling creatures could offer clues to the social norms of nematodes and help answer this question, Ding said. Ants, which assemble to form buoyant rafts to survive floodwaters, are among the few creatures known to team up like nematodes, said David Hu, a professor of mechanical engineering and biology at Georgia Tech. Hu was not involved in the study. 'Ants are incredibly sacrificial for one another, and they do not generally fight within the colony,' Hu said. 'That's because of their genetics. They all come from the same queen, so they are like siblings.' Like ants, nematodes didn't appear to display any obvious role differentiation or hierarchy within the tower structures, Perez said. Each worm from the base to the top of the structure was equally mobile and strong, indicating no competition was at play. However, the lab-cultivated worms were basically clones of one another, so it's not clear whether role differentiation occurs more often in nature, where nematode populations could have more genetic differences, she noted. Additionally, socially cooperative creatures tend to use some form of communication, Peleg said. In the case of ants, it may be their pheromone trails, while honeybees rely on their ritual dance routines and slime molds use their pulsing chemical signals. With nematodes, however, it's still not clear how they might communicate — or if they are communicating at all, Ding said. 'The next steps for (the team) are really just choosing the next questions to ask.' Notably, there has been a lot of interest in studying cooperative animal behaviors among the robotics community, Hu said. It's possible that one day, he added, information about the complex sociality of creatures like nematodes could be used to inform how technology, such as computer servers or drone systems, communicates.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store