Earth's magnetic field is weakening — magnetic crystals from lost civilizations could hold the key to understanding why
In 2008, Erez Ben-Yosef unearthed a piece of Iron Age "trash" and inadvertently revealed the strongest magnetic-field anomaly ever found.
Ben-Yosef, an archaeologist at Tel Aviv University, had been working in southern Jordan with Ron Shaar, who was analyzing archaeological materials around the Levant. Shaar, a geologist at The Hebrew University of Jerusalem, was building a record of the area's magnetic field.
The hunk of copper slag — a waste byproduct of forging metals — they found recorded an intense spike in Earth's magnetic field around 3,000 years ago.
When Ben-Yosef's team first described their discovery, many geophysicists were skeptical because the magnitude of the spike was unprecedented in geologic history. "There was no model that could explain such a spike," Ben-Yosef told Live Science.
Related: Major 'magnetic anomaly' discovered deep below New Zealand's Lake Rotorua
So Shaar worked hard to give them more evidence. After they had analyzed and described samples from around the region for more than a decade, the anomaly was accepted by the research community and named the Levantine Iron Age Anomaly (LIAA). From about 1100 to 550 B.C., the magnetic field emanating from the Middle East fluctuated in intense surges.
Shaar and Ben-Yosef were using a relatively new technique called archaeomagnetism. With this method, geophysicists can peer into the magnetic particles inside archaeological materials like metal waste, pottery and building stone to recreate Earth's magnetic past.
This technique has some advantages over traditional methods of reconstructing Earth's magnetic field, particularly for studying the relatively recent past.
Generally, scientists study Earth's past magnetic field by looking at snapshots captured in rocks as they cooled into solids. But rock formation doesn't happen often, so for the most part, it gives scientists a glimpse of Earth's magnetic field hundreds of thousands to millions of years ago, or after relatively rare events, like volcanic eruptions. Past magnetic-field data helps us understand the "geodynamo" — the engine that generates our planet's protective magnetic field. This field is generated by liquid iron slowly moving around the planet's outer core, and this movement can also affect, and in turn be affected by, processes in the mantle, Earth's middle layer. So differences in the magnetic field hint at turmoil roiling deep below the surface in Earth's geodynamo.
"We cannot directly observe what is going on in Earth's outer core," Shaar told Live Science. "The only way we can indirectly measure what is happening in the core is by looking at changes in the geomagnetic field."
Knowing what the magnetic field did in the past can help us predict its future. And some studies suggest our planet's magnetic field is weakening over time. The magnetic field shields us from deadly space radiation, so its weakening could lead to a breakdown in satellite communications, and potentially increase cancer risk. As a result, predicting the magnetic field based on its past behavior has become ever more important. But observational data of the magnetic field's intensity only began in 1832, so it's difficult to make predictions about the future if we only dimly understand the forces that steered the magnetic field in the past. Archaeomagnetism has started to fill these gaps.
How do we see the magnetic field from an archaeological artifact?
Archaeomagnetism takes advantage of our human ancestors' harnessing of the earth around them — they started building firepits, making bricks and ceramics, and eventually, smelting metals.
In each of these tasks, materials are heated to intense temperatures. At high enough temperatures, thermal energy makes the particles inside a material dance around. Then, as the material is removed from the fire and cools, the magnetically sensitive particles inside naturally orient in the direction of Earth's magnetic field, like miniature compass needles. They become "stuck" in place as the material hardens, and will retain this magnetic orientation unless the material is heated again.
The settled magnetic particles in an archaeological artifact offer a unique snapshot of the magnetic field at the time the material was last hot. This snapshot is regional, spanning a radius of about 310 miles (500 kilometers) around the sample — the scale at which the magnetic field is thought to be uniform, Shaar said. When the sample is dated with radiocarbon or other techniques, scientists can begin to build a chronological record of an area's magnetic field.
These artifacts are so helpful for geophysicists because Earth's magnetic field constantly drifts. For instance, in 2001, the magnetic north pole was closer to the very northern tip of Canada, but by 2007, it had moved over 200 miles (320 km) closer to the geographic north pole. That's because two large "lobes" of strong magnetism, called flux patches, in the outer core underneath Canada and Siberia act as funnels for the magnetic field, pulling it into Earth. As these lobes shift, they move magnetic north.
And while most of the planet's magnetic-field lines go from north to south, about 20% diverge from these paths, swirling to form eddies called magnetic anomalies.
It's these anomalies that researchers are struggling to explain, and that artifacts could reveal.
A growing field
Although archaeomagnetism has been around since the 1950s, magnetic-field-measuring technologies, like the magnetometer, have improved dramatically since then. Refined statistical analysis techniques also now allow much more detailed interpretation of archaeomagnetic data.
To get all of the data in one place and synthesize our understanding of Earth's magnetic field, scientists have started to build a global database called Geomagia50, hosted at the University of Minnesota's (UM) Institute for Rock Magnetism. But even as the technique grows in popularity, there are many hurdles to widespread adoption.
"The equipment is quite expensive," Maxwell Brown, a UM geophysicist and custodian of the Geomagia50 database, told Live Science. The most precise magnetometers can cost between $700,000 and $800,000, Brown said. "So there are only a few labs in the [United States] that have one of these."
As a result, about 90% of the data in the Geomagia50 database has come from Europe, Brown said. Africa doesn't have a single magnetometer available to geophysicists for archaeomagnetic sampling, meaning our magnetic snapshot of the continent is largely blank. Additionally, there are no current avenues for the average archaeologist to send their artifacts to be sampled, Ben-Yosef added. Anyone without a magnetometer has to set up an official partnership with someone who does have one.
Even if the equipment is available, sampling takes time and expertise, Shaar said. Measuring the direction of the field can sometimes be relatively simple, but understanding the intensity of the field takes much more work. The sample must be heated and reheated 20 separate times, gradually replacing the original magnetization and destroying the sample.
"It sounds like it's an easy thing: We put it in a magnetometer or instrument, and we get the results. No. For each artifact, we spend two months working in the lab, making experiments and then getting the results. It's a complicated, experimental procedure," Shaar explained.
This lack of global data limits our understanding of what the magnetic field has been up to in recent history. "We clearly have a very strong bias [toward Europe] in the data distribution," Monika Korte, a geophysicist and magnetic modeler at Germany's GFZ Helmholtz Centre for Geosciences, told Live Science. "Where we have sparse data we have just a very blurred picture, a very rough idea of what's going on."
Geographic diversity is important, as samples taken from one area can indicate the magnetic field only in that area.
For instance, other data similar to the Levantine Iron Age Anomaly's intense spikes of magnetic strength have been spotted in places like China and Korea around the Iron Age as well, but there's not enough evidence to confirm these as bona fide anomalies or to say whether they are related to the Levantine Iron Age Anomaly, Korte said.
Why should we learn more about historic anomalies?
The discovery of the Levantine Iron Age Anomaly redefined our previous understanding of the potential strength of the field, Shaar said. Understanding how much the magnetic field can change may seem like a purely abstract endeavor, but these ancient fluctuations may have implications for modern times.
Another important anomaly is the South Atlantic Anomaly (SAA), a region of weakened magnetic field that spans central South America in a strip that ends near southern Africa. It likely first emerged 11 million years ago, caused by the slight difference in location of the magnetic axis and the rotational axis at Earth's core. As the magnetic field is slightly off-center to the rotational axis, the field dips in strength over the South Atlantic, though the field's interaction with the churning mantle may also contribute to the anomaly.
The South Atlantic Anomaly still exists today, and has disrupted communications from satellites and the International Space Station, as the weak magnetic field in the region lets through more radiation from solar wind. Studying the SAA throughout its history has helped scientists understand how our magnetic field changes over time, and how such anomalies alter the likelihood of a magnetic field reversal, when Earth's north and south poles flip.
But although scientists have a reasonable understanding of the South Atlantic Anomaly, its weakened magnetic field is very different from the strong spikes of the Levantine Iron Age Anomaly, which has baffled geophysicists. And though researchers haven't pinpointed the exact extent of the anomaly, its seemingly small scale of around 1,000 miles (1,609 km) across, combined with the extremely high spikes in the magnetic field, isn't easily explained.
Some geomagnetists had suggested that the Levantine Iron Age Anomaly developed due to a narrow flux patch that developed on the outer core under the equator before it drifted north towards the Levant, potentially contributing to other spikes of intensity recorded in China. The inverse of the large lobes that funnel the magnetic field into the planet at the North Pole, this 'positive' flux patch would have pushed the field out in a powerful burst. Others believed the single flux patch didn't travel, instead multiple grew under the Levant, erupted, and decayed in place. Still, no theories can explain why the flux patch developed in the first place.
With the most up-to-date archaeomagnetic data, geomagnetist Pablo Rivera at the Complutense University of Madrid published a paper in January that simulated both the Levantine Iron Age Anomaly and the South Atlantic Anomaly. By modeling their movement over time, his work suggested that both anomalies may have been influenced by a superplume underneath Africa — a massive blob of hot rock on the barrier between the core and the mantle that may disrupt the flow of the geodynamo below it.
However, much is still unknown.
"So far, there is not a single simulation that really describes all the [magnetic] features that we see well," Korte told Live Science.
Many archaeomagnetic data points from around the globe suggest there may be more intensity spikes that could help resolve the mystery and create a unifying theory to explain the SAA, the LIAA and other spikes. But there currently isn't enough data to describe them accurately, or even begin to understand their causes.
"We don't really understand what causes these anomalies, but we hope to learn more about how the geodynamo operates and what kinds of changes we also can expect for the future magnetic field," Korte said.
This certainty is needed now more than ever, as more of our communications take to the skies. More than 13,500 satellites currently orbit Earth — a dramatic increase from only around 3,000 in 2020. The Government Accountability Agency estimates that another 54,000 satellites will launch by 2030. These satellites monitor weather patterns, send phone and TV signals, and create GPS.
Satellites are generally protected from space radiation by Earth's magnetic field. But in places where the field is weaker, such as above the South Atlantic Anomaly, satellites have more memory problems as radiation bombards onboard computers and corrupts data.
Filling out the picture
Despite the expense and technical challenges of archaeomagnetism, there are many initiatives to expand the amount of data. In the U.S., the Institute for Rock Magnetism is expanding its archaeomagnetism program to begin building a more thorough history of the magnetic field in the Midwest, hoping to build their own localized dating system using archaeomagnetism, similar to the record Shaar and his collaborators have built in the Levant.
RELATED STORIES
—Weird dent in Earth's magnetic field is messing with auroras in the Southern Hemisphere
—Earth's magnetic field formed before the planet's core, study suggests
—Why do magnets have north and south poles?
Interest in archaeomagnetism is also growing around the globe. The first archaeomagnetism data from Cambodia was published in 2021, and the first regional model of the magnetic field of Africa for the recent past was published in 2022.
As the field of archaeomagnetism grows, scientists can start building a better understanding of how features like superplumes affect the magnetic field. The past 50 or so years of data has captured "only a really tiny snapshot in time," Shaar said, and "maybe there are more [anomalies] to find."
Solve the daily Crossword
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
11 hours ago
- Yahoo
When will the solar system die out?
When you buy through links on our articles, Future and its syndication partners may earn a commission. Our solar system has been around for 4.6 billion years. While that sounds like a long time, it's just a blip in the 13.8 billion-year story of the universe. And one day, the solar system will cease to exist. But when will the solar system end? And how will it die out? The answers to those questions depend on how we define the death of the solar system. The solar system consists of eight planets, several dwarf planets, hundreds of moons, and billions of asteroids, comets and meteoroids. The exact boundaries of the solar system are subject to debate, but there are three main candidates: the Kuiper Belt, a region of icy objects beyond Neptune; the heliopause, where the sun's magnetic field ends; and the Oort cloud, a theoretical icy cloud lying beyond both the Kuiper Belt and the heliosphere. And, of course, at the center of it all, the sun is keeping it all together with its immense gravity. Like all stars, the sun will eventually die. Right now, it creates heat and light by transforming hydrogen into helium in its core through a process called nuclear fusion. The sun will continue to burn hydrogen for approximately another 5 billion years, said Fred Adams, a theoretical astrophysicist at the University of Michigan. But once that hydrogen fuel runs out, the sun will become more and more unstable. Its core will collapse, its surface will expand, and it will transform into a cool, bloated red giant that will engulf Mercury and then Venus. Sign up for our newsletter Sign up for our weekly Life's Little Mysteries newsletter to get the latest mysteries before they appear online. While our planet might be at the border of the red giant's surface, Adams said, chances are, it will get sucked into the red giant, too. By this point, though, humans will have been long gone. Mars will likely survive the red giant, and the outer planets are all safely outside of the red giant's reach. The Oort cloud will also be destabilized, Stern said, and the heliosphere will shrink down. Related: When will the universe die? About a billion years later, the sun will shrink to the size of Earth and transform into a white dwarf — a dim, extremely dense core of its former self. The solar system will become a freezing, desolate place. "From a habitability standpoint, that's kind of the end of the solar system," Alan Stern, a planetary scientist and principal investigator of NASA's New Horizons mission, told Live Science. Although the sun's death marks the end of the solar system as we know it, it doesn't necessarily mean its total demise. "A strict, nerdy answer is that the solar system will never end due to the sun's evolution" or the death of the sun, Stern said. Even when the sun is a burnt out cinder, he said, many objects — including giant planets like Jupiter — will continue to orbit it. Even further into the future, Adams said, the likelihood of rare events increases. Without the sun's gravitational force, the solar system will become increasingly chaotic as the gravitational balance of the solar system shifts. The risk of collisions, passing stars or supernovas coming too close to the solar system and then tearing apart its celestial bodies and space rocks will also be magnified. RELATED MYSTERIES —Did light exist at the beginning of the universe? —Could a black hole devour the universe? —How long can an asteroid 'survive'? "We're not just waiting until the universe is twice as old. We're waiting till it's a billion times older, a trillion times older, and a quadrillion times older," he explained. "If you wait, those enormous time scales and rare events start to add up. It's like, it's rare for you to win the lottery, but if you play a billion times, your chances will go up." Even if the solar system is spared a catastrophic collision, it won't last forever. Some scientists also think the protons that make up our universe will decay. The phenomenon has never been observed, but theoretical experiments have placed the proton's lifetime past 1034 years, and that number might be pushed back even further as experiments into their longevity keep running. Solar system quiz: How well do you know our cosmic neighborhood? Solve the daily Crossword
Yahoo
a day ago
- Yahoo
Don't panic if you get a lot of light sleep — expert explains why it's just as important as deep sleep
When you buy through links on our articles, Future and its syndication partners may earn a commission. Light sleep makes up a significant portion of our rest but the term might cause alarm in some if they think they're getting too much 'light sleep' and not enough 'deep sleep.' Sleep trackers label it vaguely, but what does light sleep actually do for the body and mind? Spencer Dawson, PhD, Assistant Clinical Professor and Associate Director of Clinical Training at Indiana University's Department of Psychological and Brain Sciences describes the stages of 'light sleep' as well as what happens during them. Remember, if you're monitoring sleep using wearables, try not to put too much weight into their sleep tracking and scores. They aren't looking at brain activity—which is how sleep professionals know what's truly happening and when you're in specific sleep stages and those who love to know their sleep score, here's a trick that can get it to the 90s. What is light sleep? "When I see the term 'light sleep,' it's usually in association with someone using wearables,' says Dr. Dawson. This includes non-REM (rapid-eye movement) 1 and non-REM 2 sleep, he says. "Previously, these were called stages one and two, but now they're more specifically categorized as NREM1 and NREM2." NREM3 is considered deep sleep, and all three stages stand for Non-REM, with REM sleep meaning 'rapid eye movement'. NREM1 is the lightest stage of sleep. You might not even think you've dozed off. It can last only a few minutes. Dr. Dawson says he's heard it described as if someone dozing off in a recliner in front of the TV wakes up when the TV is shut off, saying, 'I was watching that.' In NREM2, the heart rate and breathing slow. The body can move a bit but the brain appears to have less activity happening. Why is light sleep important? REM sleep gets a lot of attention for its contributions to health, but you still need light sleep as part of a healthy sleep cycle. Sleep researchers find specific neural activity patterns occur during the NREM2 sleep stage. The ones referred to as 'sleep spindles' and 'K-complexes' indicate patterns involved with brain processes, including learning, memory, and stimulus processing, according to research. When does light sleep occur? The NREM1 stage of sleep is transitional from wake to sleep. 'It's fairly junky,' says Dr. Dawson. 'If you had a lot of that, you wouldn't feel good.' It usually makes up about five percent of a night's sleep. That's followed by NREM2 sleep which makes up about 50% of one's sleep. It's estimated that someone goes through four or five sleep cycles each night of about 90 minutes each. Those include REM and NREM sleep and bouts of waking up—even if you don't recall those wakeups. Sticking to a regular sleep schedule can help you get the light sleep and deep sleep you need. What happens during light sleep Light sleep or (Non-REM sleep) plays a role in the sleep cycle helping the body move into deep sleep modes. You usually spend more time in 'light sleep' in the early part of the night. 1. Heart rate slows The heart rate decreases during N1 and N2 sleep. This is likely how wearables make predictions that you're in those 'light stages' of sleep since they're usually monitoring your heart rate. Heart rate variability tends to be greater during REM sleep. 2. Brain waves slow During light sleep, your body can move but the brain looks like it's at rest, says Dr. Dawson. Sleep researchers look at brain activity in 30-second chunks of time, he says. During light sleep, we see these large, high amplitude, slow oscillations of brain activity. In REM sleep, the brain looks 'awake' and active while the body is immobile. 3. Body temperature drops The body temperature decreases as you move into 'light sleep' but recent research says the brain temperature also falls during this time. It's suspected that this temperature drop helps the body save energy where it can before the brain temperature increases during REM sleep. 4. Eye movement stops Since REM sleep involves 'rapid eye movement' — often side to side behind the eyelids — it's worth noting that during NREM2 sleep, eye movement stops. REM is the stage of sleep in which we dream, but you're unlikely to dream during light sleep. How much light sleep should we get? In general, about 50% of one's overall sleep should be 'light' sleep, which we're calling NREM1 and NREM2 sleep stages. That being said, everyone's needs differ and vary according to their ages. 'The amount of deep sleep your body goes into tends to reflect your sleep need,' says Dr. Dawson. 'It's a homeostatic process. So basically, your brain knows how much it needs, and if it needs more, it will do more [deep sleep]. And if it needs less, it'll do less.' Simply put, you can't do much to control which stages of sleep your body goes between each night. What happens if you spend too much time in light sleep? If you spend too much time in light sleep—instead of deep sleep—you're not going to feel good. You might never feel 'rested' even if you're in bed for the recommended seven to nine hours of sleep a night. You cycle through all of these sleep stages throughout the night, including briefly waking up between them, which is perfectly normal. 'While transitioning between REM and NonREM sleep and back, you might see some of the NREM1 sleep in there as well,' says Dr. Dawson. However, an indication that you're not cycling through the stages properly and spending too much time in light sleep is daytime irritability, fatigue, mood swings and sleep deprivation. Improving your sleep hygiene and maintaining a consistent sleep schedule, as well as aiming for seven to nine hours of sleep a night, will help you experience full and healthy sleep cycles
Yahoo
a day ago
- Yahoo
New pocket-size model of ALS 'breathes and flows like human tissue'
When you buy through links on our articles, Future and its syndication partners may earn a commission. Scientists invented a pocket-sized model of the most common form of amyotrophic lateral sclerosis (ALS). The "disease-on-a-chip," made using stem cells, could pave the way for new treatments for the progressive condition, the researchers say. In ALS, the brain and spinal-cord cells that control voluntary muscle movements — known as motor neurons — break down and die. As a result, the brain can no longer send signals to the muscles, leading to symptoms of muscle weakness and paralysis, as well as trouble speaking, swallowing and breathing. In a study published July 3 in the journal Cell Stem Cell, scientists unveiled a new model of sporadic ALS, which accounts for up to 95% of ALS cases and occurs spontaneously without a clear genetic cause or known family history. The platform mimics the early stages of the disease and does so more accurately than previous lab models could. To build the model, researchers collected blood cells from young-onset ALS patients, all under age 45, and healthy male donors, whose cells were used to build a "healthy" chip, for comparison. The blood cells were reprogrammed into induced pluripotent stem cells (iPSCs), which can be turned into any type of cell in the body. The stem cells were then turned into spinal motor neurons, which normally enable movement and degenerate in ALS. A second set of iPSCs was turned into cells similar to the blood-brain barrier (BBB), which helps prevent harmful germs and toxins from entering the brain. The spinal neurons were seeded into one channel within the chip, while the BBB cells were placed in another channel. Separated by a porous membrane, the two chambers were then perfused with nutrient-rich fluid to mimic continuous blood flow. The resulting "spinal-cord chip" maintained both sets of cells for up to about a month and helped the neurons mature beyond what models without flowing fluids allowed. Related: Scientists invent 1st 'vagina-on-a-chip' The basic chip was developed by the biotech company Emulate and then customized for use in the ALS model by researchers at Cedars-Sinai in Los Angeles, California. Earlier models of ALS also used iPSC-derived neurons and structures mimicking those found in the brain, but they lacked dynamic flow, making it hard to capture specific aspects of the disease. "Our previous models were static, like a dish of cells sitting still, and couldn't differentiate between ALS and healthy cells," said study co-author Clive Svendsen, executive director of the Board of Governors Regenerative Medicine Institute at Cedars-Sinai. "We recreated an in vitro [lab dish] environment that breathes and flows like human tissue, which allowed us to detect early differences in ALS neurons." Other experts agree. "Unlike most lab models that lack vascular features and dynamic flow, this chip improves neuron health and maturation," said Dr. Kimberly Idoko, a board-certified neurologist and medical director at Everwell Neuro, who was not involved in the study. "It captures early disease signals in ALS that are often hard to detect," Idoko told Live Science in an email. With their ALS and healthy chips in hand, the researchers analyzed the activity of more than 10,000 genes across all the cells. One of the most striking findings was abnormal glutamate signaling in the neurons within the ALS chip. Glutamate is a major excitatory chemical messenger, meaning it makes neurons more likely to fire and send on a message to additional neurons; its counterpart, GABA, is inhibitory. The team saw increased activity in glutamate receptor genes and decreased activity in GABA receptor genes in the motor neurons, compared to the healthy chip. "We were intrigued to find this increase in glutamate activity," Svendsen said. "Although there was no visible neuron death, we hypothesize this hyperexcitability could trigger degeneration at later stages." RELATED STORIES —Body parts grown in the lab —Scientists developing new 'heart-on-a-chip' —Could mini space-grown organs be our 'cancer moonshot'? This finding aligns with long-standing theories about ALS, which suggest that boosted glutamate signalling contributes to nerve damage. It also corresponds with the mechanism of the ALS drug riluzole, which blocks glutamate. The new chip adds to the evidence for this mechanism and could help reveal how it manifests in the earliest stages, before symptoms would be evident in a patient, Svendsen suggested. While Idoko praised the model, she noted it lacks glial cells — additional nervous-system cells involved in ALS — and doesn't capture the late-stage degeneration seen in ALS. "However, a model like this could conceivably be useful for early drug screening, to study how a drug might cross a barrier similar to the blood-brain barrier, in preparation for animal or human studies," she said. The team is now working toward maintaining the cells in the model for up to 100 days. They also would like to incorporate other cell types, like muscle cells, to fully mimic ALS progression. As motor neurons die off in the disease, muscle cells also waste away. "Our goal is now to build models where more neurons die, so we can better map disease pathways and test treatments in a human-like setting," Svendsen said. For now, the chip offers a window into ALS's earliest molecular changes and a tool to figure out how to detect and slow the disease before irreversible damage occurs. Solve the daily Crossword