Basic research advances science, and can also have broader impacts on modern society
It might seem surprising, but federal research funding isn't just for scientists. A component of many federal grants that support basic research requires that discoveries be shared with nonscientists. This component, referred to as 'broader impacts' by the National Science Foundation, can make a big difference for K-12 students and teachers, museumgoers, citizen scientists and other people interested in science, while also helping the scientists themselves give back to the taxpayers that fund their work.
Basic research, often done because of a curious scientist's interest, may not initially have a direct application, like developing the smartphone or curing a disease. But these discoveries build important knowledge in the natural sciences, engineering, mathematics and related disciplines.
The U.S. is a world leader in scientific and technological innovation. On the federal level, the National Science Foundation, or NSF, is one of the primary funders of this kind of basic research. In 2022, the federal government funded 40% of all basic research done in the U.S., with the remainder coming from other sources, including the business sector.
During World War II, President Franklin D. Roosevelt wanted to position the U.S. for strategic and economic leadership worldwide. He commissioned physicist Vannevar Bush to develop a vision for the future of U.S. science and technology. His 1945 report, 'Science: the Endless Frontier,' became the blueprint for government-funded basic research. In 1950, Congress created the National Science Foundation to promote the progress of science, advance national prosperity and welfare and secure the national defense.
During the early decades of NSF, the 1950s until the late 1990s, proposals were mostly evaluated based on the quality of the science and the scientists doing the work. But then, the foundation created a new system, still in place today.
Thus, each NSF research proposal is now peer-reviewed based on two criteria: intellectual merit, or the quality and novelty of the science and track record of the research team, and 'broader impacts' – related activities that disseminate the discoveries to general audiences.
Intellectual merit is about advancing science knowledge and innovation, while broader impacts describe why people who aren't scientists should care, and how society could benefit from this research.
Another pragmatic aspect to broader impacts is that taxpayers pay for these activities, so it's important for them, and Congress, to understand their return on investment. These broader impacts activities communicate about, and engage the public in, research in a variety of ways.
While researchers usually understand the intellectual merit of their NSF-funded projects, these broader impacts can be challenging to characterize.
Since childhood, I've had an interest in paleontology — the study of fossils and what we can learn from them about prehistoric life. This field is primarily basic research — adding to knowledge about ancient life. As a scientist conducting basic research, I've felt the responsibility to give back to society through broader impacts activities, and I've seen many of the benefits that these activities can have.
My primary area of interest has been extinct mammals of the Americas, particularly the 55-million-year-old record of fossil horses on this continent. For years, NSF supported my discoveries about this interesting group of animals. Fossil horses are a classic example of evolution — in books and museum exhibits.
Many people are generally interested in horses, so it's easy to attract their attention with this charismatic group. They also are often surprised to learn that prehistoric horses were native to North America for millions of years. Then, during historical times, they were first introduced by humans onto the continent about 500 years ago.
Over the years, my research team has used grant-funded broader impact activities to teach people about these fossil horses and our research. One example included working with K-12 science teachers to develop lesson plans. The students measured fossil horse teeth and explored how their teeth adapted to feeding on grasses. We've also developed exhibits on fossil horses and studied how they communicate science to museum visitors.
Science teachers have joined our fieldwork to collect fossils along the Panama Canal during its recent expansion. I've given many talks and collaborated with fossil clubs and their members throughout the U.S. We've also promoted projects like Fossils4Teachers where fossil collectors donated their fossils and worked alongside K-12 teachers to develop lesson plans that were implemented back in the teachers' classrooms.
We've also been able to activate peoples' interest in other animal groups — such as fossil sharks. Through our Scientist in Every Florida School program, we gave middle school teachers study kits with real fossil shark teeth. Their students learned to identify the shark teeth and then trained computers to identify the teeth using machine learning, a type of artificial intelligence.
Broader impacts activities like these can have a variety of short- and long-term outcomes. More than 50 million people visit natural history museums in the U.S. annually. Activities that promote museums can reach large numbers of people in their pursuit of lifelong learning.
More broadly, participatory science interest groups can allow people to learn about science while informing basic research projects. Within the field of natural history, a few popular examples include the Merlin app and the iNaturalist app, both of which have millions of active observers. Merlin encourages people to submit their observations of birds, and iNaturalist accepts sightings of plants, animals and fossils, which researchers can carefully vet and use as data.
Many of the K-12 teachers my team has worked with report that they feel more confident teaching the new science content that they learned from our collaborations.
Interestingly, although much of the research on science professional development focuses on the teachers, scientists also report a high level of satisfaction and improved communication skills after working with these teachers, both in the field and back in the classroom.
Generations of U.S. scientists have greatly benefited from federal investments in basic research. In the 75 years since NSF's founding, the organization has funded hundreds of thousand projects to advance science and technology.
These have supported basic research discoveries and also the training and career development of the tens of thousands of scientists working on these projects annually.
Many prominent scientists have gone on to be productive leaders and innovators in the U.S. and internationally. NSF has funded more than 268 Nobel laureates.
While NSF invests in the discovery of foundational knowledge about the natural world, funded projects have not traditionally had direct applications for societal benefits. To be sure, however, many of NSF's projects – for example, on lasers and nanotechnology – started out as curiosity-driven basic research and ended up with immense applications for technological innovation and economic prosperity.
For example, mapping the Earth's ocean floor's magnetic properties during World War II helped scientists understand how the crust moves and mountains form. This led to the plate tectonic revolution in the earth sciences. This line of basic research then led to an important application: predicting the probable location of high-risk earthquake zones worldwide.
None of these downstream applications and benefits to society would have been realized without basic research discoveries supported by federal agencies such as NSF, and the further value added through broader impacts activities.
This article is republished from The Conversation, a nonprofit, independent news organization bringing you facts and trustworthy analysis to help you make sense of our complex world. It was written by: Bruce J. MacFadden, University of Florida
Read more:
Philanthropy provides B annually for science and health research − funding that tends to stay local
NIH funding cuts will hit red states, rural areas and underserved communities the hardest
Medical research depends on government money – even a day's delay in the intricate funding process throws science off-kilter
Bruce J. MacFadden has received funding from the U. S. National Science Foundation.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
7 hours ago
- Yahoo
Protect LIGO's science and local impact from Trump's budget cuts
The Trump administration wants to slash funding for America's two Laser Interferometer Gravitational-wave Observatories (LIGOs) as part of broader cuts to the National Science Foundation. That would be a devastating blow to the nation's global leadership in scientific research. When Congress writes its fiscal 2026 budget, it should ignore the president's anti-science request. One of the LIGO sites is on the Hanford nuclear site. The other is in Louisiana. The White House proposes cutting 40% of their funding – $48 million to $29 million. And it also dictates how that cut should be made. It wants one of the two sites shut down. Given that Washington is a blue state that is participating in multiple lawsuits against the Trump administration and Louisiana is a red state that voted for the president, the odds of LIGO Hanford surviving seem low. Either way, scientists' ability to explore the universe by detecting gravitational waves would suffer significantly. Shutting one site down would compromise scientists' ability to verify detections of cosmic events and weed out false readings originating from local disturbances. It also would prevent the two sites from triangulating where an event occurred in the sky, allowing telescopes that rely on light for observations to also find and research them. The two LIGOs work in tandem. In 2015, the Hanford observatory and its sibling in Louisiana detected gravitational waves for the first time when they measured the ripple in space-time caused by two black holes merging 1.4 billion light-years away. The findings provided fresh confirmation of Albert Einstein's theory of general relativity and earned researchers a Nobel Prize in physics. Since then, LIGO has detected hundreds of events, including black holes merging and neutron stars colliding. The Hanford site continues to refine its tools and push science forward. An upgrade a couple of years ago installed quantum squeezing technology that allows scientists to detect 60% more events and probe a larger volume of space. If funded, the observatories will continue to help humanity answer profound questions about the universe. Projects like LIGO are expensive. The National Science Foundation has spent more than $1 billion on detecting gravitational waves over four decades. At the start, skeptics deemed it risky, but it has provided tremendous return on investment. It epitomizes the sort of Big Science research that few institutions other than governments can afford. Think Europe's Large Hadron Collider, the Manhattan Project and the international Human Genome Project. Undercutting LIGO as it reaches its full potential and produces its most impressive results just to save a few million dollars would be a colossal mistake. As one commenter on the Tri-City Herald's website put it, 'It would be like inventing the microscope, seeing a cell for the first time, and then discarding it.' The best is yet to come. Even if a future administration were to restore funding, rehiring skilled researchers would be a monumental hurdle. A temporary shutdown will delay scientific progress and result in America losing ground to international researchers. LIGO has a local impact, too, and not just that it is visible from outer space. Its presence helps the Tri-Cities and the Hanford nuclear site evolve their scientific narrative from Cold War-era nuclear development to 21st-century astrophysics. It is a symbol of progress, diversification and positive global contribution that is invaluable for regional identity and attracting future talent and investment. LIGO staff go the extra mile by working with local STEM (science, technology, engineering and mathematics) students. They speak in classrooms about science careers and explain the complex workings of the observatory in a way that young people can understand. An $8 million LIGO Exploration Center, which opened in 2022 and was funded by Washington state, further enhances that public-facing mission. Such direct engagement cultivates future STEM talent and inspires the next generation of scientists and engineers. The proposed cuts to LIGO would lead to an irreversible loss of U.S. leadership in gravitational wave astronomy and an immense loss to the Tri-Cities. The Trump administration must reconsider. If it does not, Washington's congressional delegation must convince their colleagues to preserve this cornerstone of American scientific preeminence.


Washington Post
17 hours ago
- Washington Post
The NASA science missions that would be axed in Trump's 2026 budget
President Donald Trump's fiscal 2026 budget request, if approved by Congress, would kill many of NASA's plans for robotic exploration of the solar system. Gone, too, would be multiple space-based missions to study Earth, the sun and the rest of the universe. Among the planets that would get less attention are Venus, Mars and Jupiter. But the planet facing the biggest drop in scrutiny from space is our own. The Trump budget proposal calls for reducing Earth science funding by 53 percent.


Axios
2 days ago
- Axios
The great poaching: America's brain drain begins
The Trump administration's spending cuts and restrictions on foreign students are triggering a brain drain — and American scientists are panicking. Why it matters: U.S. researchers' fears are coming true. America's science pipeline is drying up, and countries like China are seizing the opportunity to surge ahead. 'This is such a race for being the science powerhouse that you never fully recover,' says Marcia McNutt, president of the National Academy of Sciences. 'You might accelerate back up to 60, but you can't make up for those years when you were at a standstill while the competition was racing ahead.' Driving the news: The National Science Foundation, which funds much of America's fundamental science research, is already doling out grants at its slowest pace in 35 years, The New York Times reports. More cuts to science could come with the "big, beautiful bill." Universities are also watching with bated breath as the administration tries to limit the number of foreign students studying in the U.S.. Harvard is pushing back, but could face a total ban on recruiting internationally. The Trump administration says it will " aggressively revoke" visas for Chinese students studying in "critical fields." By the numbers: While American universities are rescinding offers to incoming PhD students, other countries are recruiting heavily from U.S. labs. The journal Nature analyzed data from its jobs platform to track where scientists are looking for work. In the first few months of the Trump administration, there were jumps in the the number of U.S. applicants looking for jobs in Canada (+41%), Europe (+32%), China (+20%) and other Asian countries (+39%), compared to the same period in 2024. U.S. jobs saw fewer applications from candidates in Canada (–13%) and Europe (–41%). Case in point: France's Aix-Marseille University, which made headlines for earmarking millions of dollars for U.S. scientists, closed its application window after receiving a flood of apps. After American Nobel laureate Ardem Patapoutian's federal grant was frozen, he got an email from China offering 20 years of funding if he relocates his lab, The New York Times' Kate Zernike writes. He declined. 'This is a once-in-a-century brain gain opportunity,' the Australian Strategic Policy Institute wrote in a brief. The other side: The White House argues that its changes to the system will usher in a golden age of science and rebuild public trust. President Trump has also suggested that spots freed up by rejecting international students could be filled by American applicants. But professors say this isn't entirely realistic. "In hard sciences, in astronomy and physics and computer science, for example, there's no way you would fill that hole with local applicants of comparable quality," says Chris Impey, an astronomer at the University of Arizona. What to watch: 'The optimistic part of all of us thinks science is strong enough to outlast one administration, and for a while I thought that, but the hit to young people is at the center of the whole enterprise,' Impey says. 'It's like pulling the rug out from under the whole thing." It's not just brain drain of existing talent, he says. Students who are in high school and college now and thinking about a career in research might reconsider. "There's plenty of things smart kids can do. They don't have to go into science." At the same time, McNutt says she tells students: "If you went into graduate school in the fall of this year, by the time you get your PhD, this madness may be over. You come out with your new PhD ready to fill the gap."