
5 lessons on finding truth in an uncertain world
What's the big idea?
In all arenas of life, there is an endless hunt to find certainty and establish proof. We don't always have the luxury of 'being sure,' and many situations demand decisions be made even when there is insufficient evidence to choose confidently. Every field—from mathematics and tech to law and medicine—has its own methods for proving truth, and what to do when it is out of reach. Professionally and personally, it is important to understand what constitutes proof and how to proceed when facts falter.
Below, Adam shares five key insights from his new book, Proof: The Art and Science of Certainty. Listen to the audio version—read by Adam himself—in the Next Big Idea App.
1. It is dangerous to assume something is self-evident.
In the first draft of the U.S. Declaration of Independence, the Founding Fathers wrote that 'we hold these truths to be sacred and undeniable, that all men are created equal.' But shortly before it was finalized, Benjamin Franklin crossed out the words 'sacred and undeniable,' because they implied divine authority. Instead, he replaced them with the famous line, 'We hold these truths to be self-evident.' The term 'self-evident' was borrowed from mathematics—specifically from Greek geometry. The idea was that there could be a universal truth about equality on which a society could be built.
This idea of self-evident, universal truths had shaped mathematics for millennia. But the assumption ended up causing a lot of problems, both in politics and mathematics. In the 19th century, mathematicians started to notice that certain theorems that had been declared 'intuitively obvious' didn't hold up when we considered things that were infinitely large or infinitely small. It seemed 'self-evident' didn't always mean well-evidenced.
Meanwhile, in the U.S., supporters of slavery were denying what Abraham Lincoln called the national axioms of equality. In the 1850s, Lincoln (himself a keen amateur mathematician) increasingly came to think of equality as a proposition rather than a self-evident truth. It was something that would need to be proven together as a country. Similarly, mathematicians during this period would move away from assumptions that things were obvious and instead work to find sturdier ground.
2. In practice, proof means balancing too much belief and too much skepticism.
If we want to get closer to the truth, there are two errors we must avoid: we don't want to believe things that are false, and we don't want to discount things that are true. It's a challenge that comes up throughout life. But where should we set the bar for evidence? If we're overly skeptical and set it too high, we'll ignore valid claims. But if we set the bar too low, we'll end up accepting many things that aren't true.
In the 1760s, the English legal scholar William Blackstone argued that we should work particularly hard to avoid wrongful convictions. As he put it: 'It is better that ten guilty persons escape than that one innocent suffer.' Benjamin Franklin would later be even more cautious. He suggested that 'it is better 100 guilty persons should escape than that one innocent person should suffer.'
'We don't want to believe things that are false, and we don't want to discount things that are true.'
But not all societies have agreed with this balance. Some communist regimes in the 20th century declared it better to kill a hundred innocent people than let one truly guilty person walk free.
Science and medicine have also developed their own traditions around setting the bar for evidence. Clinical trials are typically designed in a way that penalizes a false positive four times more than a false negative. In other words, we don't want to say a treatment doesn't work when it does, but we really don't want to conclude it works when it doesn't.
This ability to converge on a shared reality, even if occasionally flawed, is fundamental for science and medicine. It's also an essential component of democracy and justice. Rather than embracing or shunning everything we see, we must find ways to balance the risk that comes with trusting something to be true.
3. Life is full of 'weak evidence' problems.
Science is dedicated to generating results that we can have high confidence in. But often in life, we must make choices without the luxury of extremely strong evidence. We can't, as some early statisticians did, simply remain on the fence if we're not confident either way. Whether we're sitting on a jury or in a boardroom, we face situations where a decision must be made regardless.
This is known as the 'weak evidence' problem. For example, it might be very unlikely that a death is just a coincidence. But it also might be very unlikely that a certain person is a murderer. Legal cases are often decided on the basis that weak evidence in favor of the prosecution is more convincing than weak evidence for the defendant.
Unfortunately, it can be easy to misinterpret weak evidence. A prominent example is the prosecutor's fallacy. This is a situation where people assume that if it's very unlikely a particular set of events occurred purely by coincidence, that must mean the defendant is very unlikely to be innocent. But to work out the probability of innocence, we can't just focus on the chances of a coincidence. What really matters is whether a guilty explanation is more likely than an innocent one. To navigate law—and life—we must often choose between unlikely explanations, rather than waiting for certainty.
4. Predictions are easier than taking action.
If we spot a pattern in data, it can help us make predictions. If ice cream sales increase next month, it's reasonable to predict that heatstroke cases will too. These kinds of patterns can be useful if we want to make predictions, but they're less useful if we want to intervene in some way. The correlation in the data doesn't mean that ice cream causes heatstroke, and crucially, it doesn't tell us how to prevent further illness.
'Often in life, prediction isn't what we really care about.'
In science, many problems are framed as prediction tasks because, fundamentally, it's easier than untangling cause and effect. In the field of social psychology, researchers use data to try to predict relationship outcomes. In the world of justice, courts use algorithms to predict whether someone will reoffend. But often in life, prediction isn't what we really care about. Whether we're talking about relationships or crimes, we don't just want to know what is likely to happen—we want to know why it happened and what we can do about it. In short, we need to get at the causes of what we're seeing, rather than settling for predictions.
5. Technology is changing our concept of proof.
In 1976, two mathematicians announced the first-ever computer-aided proof. Their discovery meant that, for the first time in history, the mathematical community had to accept a major theorem that they could not verify by hand.
However, not everyone initially believed the proof. Maybe the computer had made an error somewhere? Suddenly, mathematicians no longer had total intellectual control; they had to trust a machine. But then something curious happened. While older researchers had been skeptical, younger mathematicians took the opposite view. Why would they trust hundreds of pages of handwritten and hand-checked calculations? Surely a computer would be more accurate, right?
Technology is challenging how we view science and proof. In 2024, we saw the AI algorithm AlphaFold make a Nobel Prize-winning discovery in biology. AlphaFold can predict protein structures and their interactions in a way that humans would never have been able to. But these predictions don't necessarily come with traditional biological understanding.
Among many scientists, I've noticed a sense of loss when it comes to AI. For people trained in theory and explanation, crunching possibilities with a machine doesn't feel like familiar science. It may even feel like cheating or a placeholder for a better, neater solution that we've yet to find. And yet, there is also an acceptance that this is a valuable new route to knowledge, and the fresh ideas and discoveries it can bring.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


Gizmodo
an hour ago
- Gizmodo
Stone Age People Brutalized Their Prisoners of War, New Evidence Suggests
When we think of Stone Age people, most imagine small communities living in caves, cutting into their most recent hunt with primitive tools, and imitating their environment with illustrative rock art. People during the Neolithic, however—the last stage of the Stone Age (around 9000 to 3300 BCE)—also waged wars and absolutely demolished their enemies. In a study published today in the journal Science Advances, researchers present horrific evidence suggesting that Neolithic people in northeastern France mutilated foreign invaders. Their findings might represent some of the earliest known indications of gruesome victory celebrations related to war. The international team of researchers analyzed skeletal remains and severed limbs from burial pits dating to between 4300 and 4150 BCE at two sites near Strasbourg, Achenheim and Bergheim. 'A total of 82 humans are analyzed,' they wrote in the study. Their analysis revealed 'differences between victims and nonvictims and suggest that the former were members of invading groups brutally killed, perhaps exposed and deposited in pits—together with trophies in the form of severed upper limbs—by local groups in what might be one of the earliest well-documented instances of martial victory celebrations in prehistoric Europe,' they explained. Previous research in the Upper Rhine Valley had already shown that this time period was marked by military invasions and cultural upheaval, but scientists didn't know whether the human remains at Achenheim and Bergheim were of locals or foreigners and/or prisoners of war. In addition to the severed upper limbs, the researchers also identified injuries such as skull fractures that had not healed. The team, including Valladolid University's Teresa Fernandez-Crespo, suggests these victims met violent ends during war. The individuals without these sorts of unhealed injuries, on the other hand, likely received a regular burial. To investigate the differences between those who were brutally killed and those who weren't, Fernandez-Crespo and her colleagues conducted isotopic analyses. By identifying ratios of isotopes—variants of the same element—in the remains, they discovered that, while the non-victims were locals, the victims of war violence came from other regions. According to the researchers, this indicates that the victims were likely invaders killed by locals. 'In view of their demise, it is probable that the identities of these victims can be attributed to socially remote, nonlocal enemies that became trophies or captives during battles or raids and that may have been considered by their captors as not properly 'human' and hence warranting such treatment,' the researchers explained. For once, the term 'overkill' applies literally.


Medscape
2 hours ago
- Medscape
Help! My Patient Asked Me About Their Smartwatch HRV Status!
In recent years, smartwatches have gained popularity across Europe, driven by an increase in health awareness, smartphone integration, and advancements in wearable technology. They are now able to monitor an increasing number of health metrics, including the now-popular heart rate variability (HRV). So what happens when a patient comes to the clinic worried about their HRV status, as reported by their watch? To learn more about HRV and its clinical significance, Medscape Medical News spoke with two experts. Professor Thomas Gronwald, PhD, is head of the Department of Performance, Neuroscience, Therapy and Health at MSH Medical School Hamburg, Germany. He is an exercise and training scientist with a focus on internal and external load analysis in strength and conditioning training. Cailbhe Doherty, PhD, is an assistant professor at the School of Public Health, Physiotherapy, and Sports Science at University College Dublin, Ireland. His research is dedicated to investigating the effectiveness of consumer wearables in public health and the integration of mobile technologies in healthcare systems. What is HRV? And is it possible for smartwatches/wearables to accurately measure it? Thomas Gronwald, PhD Doherty: HRV is the variation in time between successive heartbeats. So even if your heart is beating at 60 beats/min, that doesn't mean it's beating exactly once every second. There are tiny fluctuations between beats — sometimes 0.98 seconds, sometimes 1.02 — and that variation is what we call HRV. Those fluctuations aren't random. They're governed by your autonomic nervous system…and within that system, there's a kind of balance: the sympathetic branch, which speeds things up (fight or flight), and the parasympathetic branch, which slows things down (rest and digest). HRV reflects that balance. In simple terms, a higher HRV generally indicates a more adaptable, resilient nervous system, and it's often used as a proxy for recovery, stress, and overall cardiovascular health. Gronwald: The gold standard for a valid and reliable assessment of the time between two successive heartbeats is the electrocardiogram (ECG), which allows recordings in the laboratory or during daily activity — up to 24 hours or longer. Several mobile and user-friendly measurement systems and wearables exist, which can record R-R intervals with different applications and form factors — chest strap systems, adhesive patches, and electrode systems on the skin — that utilize not only electrophysiologic but also optically derived signals such as photoplethysmography…. Most commercially available portable devices show a low absolute error under resting conditions but should always be validated against reference measures to clarify the accuracy of data parameters and maximize real-world application value. Is HRV an important measure of someone's health? Is it an important measure for an athlete? Doherty: Yes, but with some important qualifications. HRV can be a valuable indicator of health, but it's not a silver bullet. In a general health context, higher HRV is often associated with better cardiovascular health, lower levels of chronic stress, and even reduced risk for mortality…. It's a useful window into your overall resilience. The issue is that HRV is highly individual. What's high for one person might be low for another. It's not the kind of measure where a single value tells the whole story. You really need to look at trends over time and ideally interpret them in the context of things like sleep, recovery, illness, and training load. Gronwald: The usefulness of HRV as an indicator of physiologic and pathologic conditions, for risk stratification, and as a marker of autonomic adaptive and regulatory capacity is evident. However, longitudinal data recordings are recommended when trend analysis with contextual data is intended. Considering the mentioned context-sensitive requirements, HRV analysis allows for longitudinal trend analysis of patients and healthy individuals, including athletic and nonathletic populations in various clinical and performance-related settings. This includes the application of HRV monitoring for resting conditions, during and/or after biofeedback and training interventions, as well as general relationships between recovery status, previous exercise conditions, and symptoms of overreaching and overtraining. What should a doctor do if someone goes to them saying their smartwatch is showing that they continuously have a low HRV status? Cailbhe Doherty, PhD Doherty: I'd suggest it should be treated as a starting point. The physician might ask: Has this person noticed other symptoms — fatigue, poor sleep, high stress? Has their resting heart rate changed? Are there lifestyle factors — alcohol, illness, overtraining, or mental health — that could explain the trend? And if it seems warranted, they could conduct more standardized assessments, such as an ECG-based HRV measurement or a broader autonomic function test. The data is not medical grade and we don't know enough about how the proprietary algorithms are processing the signals. But if the question is whether the HRV trend might reflect something real, then yes, it's possible. Ultimately, I think wearables are better at raising questions than answering them. And that's not a bad thing. Is such data reliable? Gronwald: This depends strongly on the wearable or recording device. The measurement principles and the type of analysis and processing of the biosignal vary significantly between different devices. On the one hand, sleep analyses are used during the night, while on the other hand, context-free time points during the day are often used. Here, care should be taken to include standardized situations for a measurement and interpretation context. It is recommended to use validated measurement systems that either use the entire night as a reference phase or a consistent measurement situation early in the morning after waking up without prior stressors. Both approaches have advantages and disadvantages. How can someone improve their HRV? Gronwald: HRV improves when the body is balanced between activity and recovery within hemodynamic boundaries, with strong support from sleep, stress reduction, and a healthy active lifestyle. Regular physical activity, especially moderate aerobic exercise — such as walking, cycling, or swimming — and strength training can increase HRV over time. Breathing exercises with slow, deep, and diaphragmatic breathing — for example 4-6 breaths per minute — can help to activate the parasympathetic nervous system, which improves HRV. Good sleep quality with consistent sleep patterns, enough deep sleep, and avoiding late-night screen time and activity are essential for higher HRV. Further, stress management and practices such as meditation, social connection, mindfulness, or progressive muscle relaxation are linked to emotional well-being and can reduce stress and therefore improve HRV. Finally, healthy nutrition habits such as a balanced diet rich in whole foods, omega-3 fatty acids, fruits, and vegetables supports HRV — including limitation of stimulants, alcohol, nicotine, and processed foods. How important do you think wearable technology is to support the provision of healthcare across Europe? What role do you think it will play in the future? Doherty: Healthcare systems across Europe are facing enormous pressure: aging populations, rising chronic disease, long waiting lists, and constrained resources. Wearables offer something really compelling in that context: the ability to monitor people continuously, passively, and remotely, outside the clinic, in real-world settings. [But] at the moment, most wearable data isn't integrated into the healthcare system. It lives in consumer ecosystems — Apple, Google, Fitbit, Garmin — and that creates problems around standardization, privacy, and clinical utility. We can't expect a GP or a cardiologist to wade through raw data from 10 different apps and figure out what it means. There are also big equity issues. Most wearables are still designed and validated in relatively narrow populations — usually younger, healthier, often White, middle-income users. If we start using wearable data in clinical decision-making, we need to be absolutely sure it's valid across diverse populations, otherwise we risk baking health inequalities into digital health systems. Another issue is data privacy. When we start linking consumer data to clinical records, the stakes get much higher. Who owns the data? Who profits from it? Who gets access to it? Ultimately, I think wearables will play an increasingly important role in population health monitoring, early detection, and personalized prevention. But for that to happen in a way that is safe, effective, and fair, we need interoperability, regulatory oversight — especially on algorithm transparency, robust validation in real-world populations, and a clear framework around data rights and governance. Gronwald and Doherty reported no relevant financial relationships.
Yahoo
3 hours ago
- Yahoo
Pfizer battles another Paxlovid lawsuit from Enanta
If you don't succeed at first, try again – in separate regions. That's the motto Enanta Pharmaceuticals is following, at least, after disclosing it has sued Pfizer in Europe over a patent infringement relating to Covid-19 treatment pill Paxlovid (nirmatrelvir/ritonavir). In June 2022, Enanta filed a lawsuit against Pfizer in a US district court in Massachusetts, claiming that the big pharma company infringed on a patent describing protease inhibitors invented by its scientists. Enanta has now followed that up with another filing in Europe, making the same accusation. Since being emergency authorised in 2021, anti-viral Paxlovid has generated Pfizer more than $26bn in global revenue. This includes a staggering $18.9bn in 2022 when Covid-19 cases were still prevalent. Despite waning demand for Covid-19 treatments, the pill still brought in $1.2bn in 2024, buoyed by government orders. However, Enanta – known for co-developing hepatitis C virus treatment glecaprevir/pibrentasvir with AbbVie – believes Pfizer designed Paxlovid via unlawful means. The US biotech stated it is 'seeking a determination of liability for use and infringement of European Patent No. EP 4 051 265 (the '265 Patent) in the manufacture, use and sale of Pfizer's Covid-19 antiviral, Paxlovid'. In an emailed statement to Pharmaceutical Technology, a Pfizer spokesperson said: 'We are confident in our intellectual property (IP) surrounding Paxlovid and will respond in due course in court.' The lawsuit, filed in the European Union's (EU) Unified Patent Court (UPC), targets Pfizer's commercial activity in the 18 countries of the EU. The company confirmed the '265 patent in question is the European counterpart of US patent number 11,358,953 (the '953 Patent) that is the centre of the US lawsuit. Although it is technically ongoing, Enanta's US lawsuit hit a major roadblock. In December 2024, a federal judge in Massachusetts sided with Pfizer, granting that the '953 patent is invalid. Enanta confirmed at the time it would appeal the decision, adding it 'believes strongly in the merits of our case'. Pfizer reported strong Q2 2025 results this month, bucking a tepid earnings window that gripped the wider pharma industry. Sales for the Paxlovid grew 71% while the Covid-19 vaccine Comirnaty revenue surged 95%. However, the legal challenge posed by Enanta marks the second issue Pfizer has had to firefight this week. The big pharma company reported a Phase III trial failure for a sickle cell disease candidate purchased as part of a $5.4bn takeover of Global Blood Therapeutics in 2022. "Pfizer battles another Paxlovid lawsuit from Enanta" was originally created and published by Pharmaceutical Technology, a GlobalData owned brand. The information on this site has been included in good faith for general informational purposes only. It is not intended to amount to advice on which you should rely, and we give no representation, warranty or guarantee, whether express or implied as to its accuracy or completeness. You must obtain professional or specialist advice before taking, or refraining from, any action on the basis of the content on our site. Sign in to access your portfolio