logo
A lost chunk of ancient continent is sucking bits of North America into Earth's mantle

A lost chunk of ancient continent is sucking bits of North America into Earth's mantle

Yahoo03-04-2025
When you buy through links on our articles, Future and its syndication partners may earn a commission.
An ancient slab of Earth's crust buried deep beneath the Midwest is sucking huge swatches of present-day's North American crust down into the mantle, researchers say.
The slab's pull has created giant "drips" that hang from the underside of the continent down to about 400 miles (640 kilometers) deep inside the mantle, according to a new study. These drips are located beneath an area spanning from Michigan to Nebraska and Alabama, but their presence appears to be impacting the entire continent.
The dripping area looks like a large funnel, with rocks from across North America being pulled toward it horizontally before getting sucked down. As a result, large parts of North America are losing material from the underside of their crust, the researchers said.
"A very broad range is experiencing some thinning," study lead author Junlin Hua, a geoscientist who conducted the research during a postdoctoral fellowship at The University of Texas (UT) at Austin, said in a statement. "Luckily, we also got the new idea about what drives this thinning," said Hua, now a professor at the University of Science and Technology of China.
Related: Earth's crust is peeling away under California
The researchers found that the drips result from the downward dragging force of a chunk of oceanic crust that broke off from an ancient tectonic plate called the Farallon plate.
The Farallon plate and the North American plate once formed a subduction zone along the continent's west coast, with the former sliding beneath the latter and recycling its material into the mantle. The Farallon plate splintered due to the advance of the Pacific plate roughly 20 million years ago, and remnant slabs subducted beneath the North American plate slowly drifted off.
One of these slabs currently straddles the boundary between the mantle transition zone and the lower mantle roughly 410 miles (660 km) beneath the Midwest. Dubbed the "Farallon slab" and first imaged in the 1990s, this piece of oceanic crust is responsible for a process known as "cratonic thinning," according to the new study, which was published March 28 in the journal Nature Geoscience.
Cratonic thinning refers to the wearing away of cratons, which are regions of Earth's continental crust and upper mantle that have mostly remained intact for billions of years. Despite their stability, cratons can undergo changes, but this has never been observed in action due to the huge geologic time scales involved, according to the study.
Now, for the first time, researchers have documented cratonic thinning as it occurs. The discovery was possible thanks to a wider project led by Hua to map what lies beneath North America using a high-resolution seismic imaging technique called "full-waveform inversion." This technique uses different types of seismic waves to extract all the available information about physical parameters underground.
"This sort of thing is important if we want to understand how a planet has evolved over a long time," study co-author Thorsten Becker, a distinguished chair in geophysics at UT Austin, said in the statement. "Because of the use of this full-waveform method, we have a better representation of that important zone between the deep mantle and the shallower lithosphere [crust and upper mantle]."
RELATED STORIES
—Scientists discover 'sunken worlds' hidden deep within Earth's mantle that shouldn't be there
—Earth's crust may be building mountains by dripping into the mantle
—Gargantuan waves in Earth's mantle may make continents rise, new study finds
To test their results, the researchers simulated the impact of the Farallon slab on the craton above using a computer model. A dripping area formed when the slab was present, but it disappeared when the slab was absent, confirming that — theoretically, at least — a sunken slab can drag rocks across a large area down into Earth's interior.
Dripping beneath the Midwest won't lead to changes at the surface anytime soon, the researchers said, adding that it may even stop as the Farallon slab sinks deeper into the lower mantle and its influence over the craton wanes.
The findings could help researchers piece together the enormous puzzle of how Earth came to look the way it does today. "It helps us understand how do you make continents, how do you break them, and how do you recycle them," Becker said.
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Don't miss Mercury, the moon and the Beehive Cluster align in a special August morning sky show
Don't miss Mercury, the moon and the Beehive Cluster align in a special August morning sky show

Yahoo

time3 hours ago

  • Yahoo

Don't miss Mercury, the moon and the Beehive Cluster align in a special August morning sky show

When you buy through links on our articles, Future and its syndication partners may earn a commission. Isaac Asimov (1920-1992), a legendary writer of science and science fiction, once noted in "The Solar System and Back," that the planet Mercury is rarely visible when it is truly dark. "I suspect, in fact," he observed, "that many people today (when the horizon is generally much dirtier and the sky much hazier with the glare of artificial light than it was in centuries past) have never seen Mercury." In pre-Christian times, Mercury had two names, as it was not realized that it could alternately appear on one side of the sun and then the other. When visible in the evening sky, it was called Mercury and when appearing as a morning star, it was known as Apollo. It was Pythagoras, around the 5th century B.C., who first recognized that Mercury and Apollo were the same celestial body. A fine viewing window is now open Mercury is indeed clever at escaping detection. It is said that the astronomer Copernicus never saw the planet. Yet you can find it, if you know where to look. As the innermost planet, Mercury is usually masked by the sun's glare, so we must look for Mercury either soon after sunset, or in the case we are discussing here, just before sunrise. On the morning of Tuesday morning (Aug. 19), Mercury reaches its greatest western elongation, meaning it's at its maximum apparent distance from the sun. To catch a glimpse, set your alarm for 45 minutes before sunrise and look low toward the east-northeast horizon. First, you'll spot brilliant Venus. About one and a half fist‑widths (approximately 15°) lower left of Venus, look for a bright, yellowish point of light, Mercury. Skinny moon points the way on Thursday On Thursday morning (Aug. 21), besides Venus, there will be another celestial object to guide you to Mercury. That will be our moon. The moon will appear as a very slender sliver of light, only 4% illuminated and less than two days before the new phase. It will be positioned 5 degrees (half a fist) above Mercury. Binoculars will make things a bit easier to make a sighting, though sighting this very thin waning lunar crescent should be evident with the unaided eye. This morning Mercury will shine at magnitude -0.3. Among the stars, only Sirius and Canopus shine brighter, so once you locate the moon, sighting Mercury should be a relatively easy task. And although it swings back toward the sun after Aug. 18, it will continue to be visible until virtually the end of the month as it continues to brighten. By Aug. 28, it will have more than doubled in brightness, reaching a brilliant magnitude of -1. Beehive buzzes nearby TOP TELESCOPE PICK Want to view the night sky up close? The Celestron NexStar 8SE is ideal for beginners wanting quality, reliable and quick views of celestial objects. For a more in-depth look, check out our Celestron NexStar 8SE review. Besides viewing the moon and Mercury with binoculars on Aug. 21, there will be another celestial sight to look for that morning. Try looking for it when the twilight sky is not so bright, roughly an hour or more before sunrise. Located about 2 degrees below the hairline-thin moon will be M44, one of the sky's finest open clusters. Popularly known as the Beehive, it's also one of the nearest open clusters at a distance of 500 light-years. Binoculars are ideal for examining this wide, interesting star field. Its central group of stars is arranged into rough rows that form a generally triangular shape, suggesting an old-fashioned beehive. For centuries, M44 has also been known as Praesepe, Latin for "Manger." Pressing close to it are the two stars that supposedly represented the Northern and Southern Donkeys: Asellus Borealis and Australis. Joe Rao serves as an instructor and guest lecturer at New York's Hayden Planetarium. He writes about astronomy for Natural History magazine, Sky and Telescope and other publications.

SpaceX's Super Heavy booster will fly with fresh 'grid fins'
SpaceX's Super Heavy booster will fly with fresh 'grid fins'

Yahoo

time6 hours ago

  • Yahoo

SpaceX's Super Heavy booster will fly with fresh 'grid fins'

When you buy through links on our articles, Future and its syndication partners may earn a commission. Recently, SpaceX posted photos on X of its redesigned grid fin for its Super Heavy rocket booster. What is it? Grid fins are lattice-style control surfaces that help steer rockets back down through the atmosphere toward their landing zones, helping to reduce the possible risk of damage or a crash. For SpaceX, which relies on reusable spacecraft like Falcon 9 and Starship, having more controllable areas can help keep the spacecraft in better condition, allowing for more future launches. Where is it? This photo was taken at SpaceX's Starbase facility in Boca Chica, Texas. Why is it amazing? SpaceX has been working on the next-generation of its Super Heavy booster, which includes a new style of grid fins. In their post on X, the company mentioned that "The redesigned grid fins are 50% larger and higher strength, moving from four fins to three for vehicle control while enabling the booster to descend at higher angles of attack." This change allows for the team to have more control during descent while allowing the booster to return to Earth from more extreme angles, improving its landing capabilities. Want to learn more? You can read more about SpaceX's work and its ongoing launches.

Hubble telescope uncovers rare star born from cosmic collision: 'A very different history from what we would have guessed'
Hubble telescope uncovers rare star born from cosmic collision: 'A very different history from what we would have guessed'

Yahoo

time7 hours ago

  • Yahoo

Hubble telescope uncovers rare star born from cosmic collision: 'A very different history from what we would have guessed'

When you buy through links on our articles, Future and its syndication partners may earn a commission. Astronomers using the Hubble Space Telescope have discovered that a seemingly ordinary white dwarf star is actually the result of a dramatic stellar merger. This result, detailed in a new study led by Snehalata Sahu and Boris Gaensicke of the University of Warwick in the U.K., suggests that other "normal-looking" white dwarfs scattered throughout the universe could also have violent pasts. "It's a discovery that underlines things may be different from what they appear to us at first glance," Gaensicke, study co-author and a professor of physics at the University of Warwick who serves as the principal investigator of the Hubble program, said in a statement. "Until now, this appeared as a normal white dwarf, but Hubble's ultraviolet vision revealed that it had a very different history from what we would have guessed." The star, named WD 0525+526, is located about 128 light-years from Earth. Though it appeared rather standard at first glance through visible light, further observations using the Hubble telescope revealed telltale signs of a more turbulent origin, the new study reports. White dwarfs are the dense remnants of stars like our sun that have exhausted their fuel supplies and collapsed into Earth-size objects. Despite their small size, however, they can pack in up to 1.4 times the mass of the sun. Most white dwarfs form from the predictable evolution of single stars nearing the final days of their life cycles, which is a path our own sun is expected to follow in about 5 billion years. However, WD 0525+526 may have followed a very different path. Instead of forming from one dying star, it appears to have emerged from the violent collision and merger of two stars. This dramatic past, the new study says, left subtle but detectable fingerprints in the white dwarf's atmospheric makeup. When Gaensicke and his team examined WD 0525+526 with Hubble's ultraviolet instruments, they detected an unusual amount of carbon in the star's atmosphere — a key sign the star was formed in a merger. Typically, white dwarfs have outer layers of hydrogen and helium that obscure their carbon-rich cores. But in mergers such as this one, the intense collision can strip away much of these outer layers, allowing carbon to rise to the surface. The signals of such stars are difficult to detect in visible light, but become clearer in ultraviolet wavelengths — and that's where Hubble excels. WD 0525+526 is remarkable even among the small number of white dwarfs known to be merger remnants, according to the statement. It has a surface temperature of nearly 21,000 Kelvin (about 37,000 degrees Fahrenheit) and a mass 1.2 times that of the sun, making it both hotter and more massive than others in this rare category, the study notes. Because WD 0525+526 appeared completely normal in visible light, astronomers now suspect that many more white dwarfs could be hiding similar explosive origins. "We would like to extend our research on this topic by exploring how common carbon white dwarfs are among similar white dwarfs, and how many stellar mergers are hiding among the normal white dwarf family," Antoine Bedrad, a researcher at the University of Warwick who co-led the study, said in the statement. RELATED STORIES: — White dwarfs: Facts about the dense stellar remnants — White dwarfs are 'heavy metal' zombie stars endlessly cannibalizing their dead planetary systems — What is dark energy? Exploding white dwarf stars may help us crack the case "That will be an important contribution to our understanding of white dwarf binaries, and the pathways to supernova explosions." This research is described in a paper published Aug. 6 in the journal Nature Astronomy.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store