logo
New observations of the universe show how mysterious dark energy may be evolving

New observations of the universe show how mysterious dark energy may be evolving

CNN02-04-2025

New hints from one of the most extensive surveys of the cosmos to date suggest that mysterious dark energy may be evolving in ways that could shift how astronomers understand the universe.
Dark energy is a term scientists use to describe an energy or force that accelerates the expansion of the universe. But — although it represents 70% of the energy in the cosmos — researchers still have no idea exactly what dark energy is, said Mustapha Ishak-Boushaki, professor of physics and astrophysics at the University of Texas at Dallas.
Ishak-Boushaki is a cochair of a working group for the Dark Energy Spectroscopic Instrument collaboration, known as DESI. The instrument, now in its fourth year of surveying the sky, can observe light from 5,000 galaxies at the same time. When the project concludes next year, it will have measured the light of about 50 million galaxies.
The collaboration, which includes more than 900 researchers, shared the latest data release from DESI's first three years of observations on March 19. Among its findings are the measurements of nearly 15 million galaxies and quasars, some of the brightest objects in the universe. Ishak-Boushak helped lead the analysis of the latest DESI data release, which suggests that dark energy — long called a 'cosmological constant' given that astronomers thought it was unchanging — is behaving in unexpected ways and may even be weakening over time.
'The discovery of dark energy, nearly 30 years ago, was already the biggest surprise of my scientific lifetime,' said David Weinberg, a professor of astronomy at The Ohio State University who contributed to the DESI analysis, in a statement. 'These new measurements offer the strongest evidence so far that dark energy evolves, which would be another mind-blowing change to our understanding of how the universe works.'
The findings bring astronomers another step closer to unmasking the mysterious nature of dark energy, which may mean that the standard model of how the universe works could also require an update, scientists say.
The Dark Energy Spectroscopic Instrument is atop the National Science Foundation's Nicholas U. Mayall 4-meter Telescope at Kitt Peak National Observatory in Tucson, Arizona. The instrument's 5,000 fiber-optic 'eyes' and extensive surveying capabilities are enabling scientists to build one of the largest 3D maps of the universe and track how dark energy has influenced and shaped the cosmos over the past 11 billion years.
It takes time for the light from celestial objects like galaxies to travel to Earth, which means that DESI can effectively see what the cosmos was like at different points in time, from billions of years ago to the present.
'DESI is unlike any other machine in terms of its ability to observe independent objects simultaneously,' said John Moustakas, a professor of physics at Siena College and colead of the data release.
The newest findings include data on more than double the cosmic objects that were surveyed and presented less than a year ago. Those 2024 revelations first hinted at how dark energy may be evolving.
'We're in the business of letting the universe tell us how it works, and maybe the universe is telling us it's more complicated than we thought it was,' said Andrei Cuceu, a postdoctoral researcher at the US Department of Energy's Lawrence Berkeley National Laboratory, which manages DESI, and cochair of DESI's Lyman-alpha working group, in a statement. 'It's interesting and gives us more confidence to see that many different lines of evidence are pointing in the same direction.'
DESI can measure what scientists call the baryon acoustic oscillation, or BAO, scale — essentially how events that occurred early in the universe left behind patterns in how matter is distributed across the cosmos. Astronomers look to the BAO scale, with separations of matter by about 480 million light-years, as a standard ruler.
'This separation scale is like a really gigantic ruler in space that we can use to measure distances, and we use the combination of these distance and redshifts (speed objects are moving away from us) to measure the expansion of the universe,' said Paul Martini, a coordinator of the analysis and professor of astronomy at The Ohio State University.
Measuring dark energy's influence across the history of the universe shows how dominant a force it has been.
Researchers began to notice when they combined these observations with other measurements of light across the universe such as exploding stars, the gravity-warped light of distant galaxies, and the light leftover from the dawn of the universe, called the cosmic microwave background, the DESI data shows that dark energy's impact could be weakening over time.
'If this continues then eventually dark energy will not be the dominant force in the universe,' Ishak-Boushak said in an email. 'Therefore the universe expansion will stop accelerating and will go at a constant rate or even in some models could also stop and collapse back. Of course, these futures are very remote and will take billions and billions of years to happen. I've worked on the question of cosmic acceleration for 25 years, and my perspective is, if the evidence continues to grow, and it is likely to, then this will be huge for cosmology and all of physics.'
There isn't enough evidence yet to declare a groundbreaking discovery that definitively says dark energy is evolving and weakening, but that could change within just a couple of years, Ishak-Boushak said.
'My first big question is if we will continue to see evidence for evolving dark energy as our measurements get better and better,' Martini said. 'If we do get to the point where the evidence is overwhelming, then my next questions will be: How does dark energy evolve? And what are the most likely physical explanations?'
The new data release could also help astrophysicists better understand how galaxies and black holes evolve and the nature of dark matter. Although dark matter has never been detected, it is believed to make up 85% of the total matter in the universe.
Scientists involved with the collaboration are eager to improve their measurements using DESI.
'Whatever the nature of dark energy is, it will shape the future of our universe,' said Michael Levi, DESI director and a scientist at the Lawrence Berkeley National Laboratory. 'It's pretty remarkable that we can look up at the sky with our telescopes and try to answer one of the biggest questions that humanity has ever asked.'
A new experiment called Spec-S5, or Stage 5 Spectroscopic Experiment, could measure more than 10 times as many galaxies as DESI to study both dark energy and dark matter, Martini said.
'Spec-S5 would use telescopes in both the northern and southern hemispheres to map galaxies across the entire sky,' Martini said. 'We are also excited about how the (Vera) Rubin telescope will study supernovae, and provide a new, uniform dataset to study the (universe's) expansion history.'
Other space observatories, like the Euclid space telescope and the Nancy Grace Roman Space Telescope, set to launch in 2027, will also contribute more key measurements of dark matter and dark energy in the coming years that could help fill in the gaps, said Jason Rhodes, an observational cosmologist at NASA's Jet Propulsion Laboratory in Pasadena, California. Rhodes, who is not involved in DESI, is the US science lead for Euclid and principal investigator for NASA's Euclid dark energy science team.
Rhodes, who calls the results intriguing, said the data shows a slight but persistent tension between measurements from the early days of the universe and those from the later universe.
'(This means) that our simplest model of dark energy doesn't quite allow for the early universe we observe to evolve into the late universe we observe,' Rhodes said. 'DESI results (and some other recent results) seem to indicate that a more complex model of dark energy is preferred. This is truly exciting because it may mean that new, unknown, physics governs the evolution of the universe. DESI has given us tantalizing results that may indicate a new model of cosmology is needed.'

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Protect LIGO's science and local impact from Trump's budget cuts
Protect LIGO's science and local impact from Trump's budget cuts

Yahoo

time12 hours ago

  • Yahoo

Protect LIGO's science and local impact from Trump's budget cuts

The Trump administration wants to slash funding for America's two Laser Interferometer Gravitational-wave Observatories (LIGOs) as part of broader cuts to the National Science Foundation. That would be a devastating blow to the nation's global leadership in scientific research. When Congress writes its fiscal 2026 budget, it should ignore the president's anti-science request. One of the LIGO sites is on the Hanford nuclear site. The other is in Louisiana. The White House proposes cutting 40% of their funding – $48 million to $29 million. And it also dictates how that cut should be made. It wants one of the two sites shut down. Given that Washington is a blue state that is participating in multiple lawsuits against the Trump administration and Louisiana is a red state that voted for the president, the odds of LIGO Hanford surviving seem low. Either way, scientists' ability to explore the universe by detecting gravitational waves would suffer significantly. Shutting one site down would compromise scientists' ability to verify detections of cosmic events and weed out false readings originating from local disturbances. It also would prevent the two sites from triangulating where an event occurred in the sky, allowing telescopes that rely on light for observations to also find and research them. The two LIGOs work in tandem. In 2015, the Hanford observatory and its sibling in Louisiana detected gravitational waves for the first time when they measured the ripple in space-time caused by two black holes merging 1.4 billion light-years away. The findings provided fresh confirmation of Albert Einstein's theory of general relativity and earned researchers a Nobel Prize in physics. Since then, LIGO has detected hundreds of events, including black holes merging and neutron stars colliding. The Hanford site continues to refine its tools and push science forward. An upgrade a couple of years ago installed quantum squeezing technology that allows scientists to detect 60% more events and probe a larger volume of space. If funded, the observatories will continue to help humanity answer profound questions about the universe. Projects like LIGO are expensive. The National Science Foundation has spent more than $1 billion on detecting gravitational waves over four decades. At the start, skeptics deemed it risky, but it has provided tremendous return on investment. It epitomizes the sort of Big Science research that few institutions other than governments can afford. Think Europe's Large Hadron Collider, the Manhattan Project and the international Human Genome Project. Undercutting LIGO as it reaches its full potential and produces its most impressive results just to save a few million dollars would be a colossal mistake. As one commenter on the Tri-City Herald's website put it, 'It would be like inventing the microscope, seeing a cell for the first time, and then discarding it.' The best is yet to come. Even if a future administration were to restore funding, rehiring skilled researchers would be a monumental hurdle. A temporary shutdown will delay scientific progress and result in America losing ground to international researchers. LIGO has a local impact, too, and not just that it is visible from outer space. Its presence helps the Tri-Cities and the Hanford nuclear site evolve their scientific narrative from Cold War-era nuclear development to 21st-century astrophysics. It is a symbol of progress, diversification and positive global contribution that is invaluable for regional identity and attracting future talent and investment. LIGO staff go the extra mile by working with local STEM (science, technology, engineering and mathematics) students. They speak in classrooms about science careers and explain the complex workings of the observatory in a way that young people can understand. An $8 million LIGO Exploration Center, which opened in 2022 and was funded by Washington state, further enhances that public-facing mission. Such direct engagement cultivates future STEM talent and inspires the next generation of scientists and engineers. The proposed cuts to LIGO would lead to an irreversible loss of U.S. leadership in gravitational wave astronomy and an immense loss to the Tri-Cities. The Trump administration must reconsider. If it does not, Washington's congressional delegation must convince their colleagues to preserve this cornerstone of American scientific preeminence.

The great poaching: America's brain drain begins
The great poaching: America's brain drain begins

Axios

time2 days ago

  • Axios

The great poaching: America's brain drain begins

The Trump administration's spending cuts and restrictions on foreign students are triggering a brain drain — and American scientists are panicking. Why it matters: U.S. researchers' fears are coming true. America's science pipeline is drying up, and countries like China are seizing the opportunity to surge ahead. 'This is such a race for being the science powerhouse that you never fully recover,' says Marcia McNutt, president of the National Academy of Sciences. 'You might accelerate back up to 60, but you can't make up for those years when you were at a standstill while the competition was racing ahead.' Driving the news: The National Science Foundation, which funds much of America's fundamental science research, is already doling out grants at its slowest pace in 35 years, The New York Times reports. More cuts to science could come with the "big, beautiful bill." Universities are also watching with bated breath as the administration tries to limit the number of foreign students studying in the U.S.. Harvard is pushing back, but could face a total ban on recruiting internationally. The Trump administration says it will " aggressively revoke" visas for Chinese students studying in "critical fields." By the numbers: While American universities are rescinding offers to incoming PhD students, other countries are recruiting heavily from U.S. labs. The journal Nature analyzed data from its jobs platform to track where scientists are looking for work. In the first few months of the Trump administration, there were jumps in the the number of U.S. applicants looking for jobs in Canada (+41%), Europe (+32%), China (+20%) and other Asian countries (+39%), compared to the same period in 2024. U.S. jobs saw fewer applications from candidates in Canada (–13%) and Europe (–41%). Case in point: France's Aix-Marseille University, which made headlines for earmarking millions of dollars for U.S. scientists, closed its application window after receiving a flood of apps. After American Nobel laureate Ardem Patapoutian's federal grant was frozen, he got an email from China offering 20 years of funding if he relocates his lab, The New York Times' Kate Zernike writes. He declined. 'This is a once-in-a-century brain gain opportunity,' the Australian Strategic Policy Institute wrote in a brief. The other side: The White House argues that its changes to the system will usher in a golden age of science and rebuild public trust. President Trump has also suggested that spots freed up by rejecting international students could be filled by American applicants. But professors say this isn't entirely realistic. "In hard sciences, in astronomy and physics and computer science, for example, there's no way you would fill that hole with local applicants of comparable quality," says Chris Impey, an astronomer at the University of Arizona. What to watch: 'The optimistic part of all of us thinks science is strong enough to outlast one administration, and for a while I thought that, but the hit to young people is at the center of the whole enterprise,' Impey says. 'It's like pulling the rug out from under the whole thing." It's not just brain drain of existing talent, he says. Students who are in high school and college now and thinking about a career in research might reconsider. "There's plenty of things smart kids can do. They don't have to go into science." At the same time, McNutt says she tells students: "If you went into graduate school in the fall of this year, by the time you get your PhD, this madness may be over. You come out with your new PhD ready to fill the gap."

Powerful solar telescope unveils ultra-fine magnetic 'curtains' on the sun's surface
Powerful solar telescope unveils ultra-fine magnetic 'curtains' on the sun's surface

Yahoo

time2 days ago

  • Yahoo

Powerful solar telescope unveils ultra-fine magnetic 'curtains' on the sun's surface

When you buy through links on our articles, Future and its syndication partners may earn a commission. The National Science Foundation's (NSF) Daniel K. Inouye Solar Telescope, located on the summit of Haleakalā on the island of Maui, Hawaii, captured the sharpest-ever images of the sun's surface. The images show ultra-fine bright and dark stripes (called striations) in the thin, gaseous layer of the sun's atmosphere known as the photosphere, according to a statement from the National Solar Observatory (NSO), which operates the solar telescope. "In this work, we investigate the fine-scale structure of the solar surface for the first time with an unprecedented spatial resolution of just about 20 kilometers [12.4 miles], or the length of Manhattan Island," David Kuridze, lead author of the study and a NSO scientists, said in the statement. "These striations are the fingerprints of fine-scale magnetic field variations." The striations appear as alternating bright and dark stripes along the walls of solar granules — the convection cells that transport heat from the sun's interior to its surface. These patterns result from curtain-like magnetic fields that ripple and shift like fabric fluttering in the wind. As light from the hot granule walls passes through these magnetic "curtains," variations in the magnetic field strength cause changes in brightness, effectively tracing the underlying magnetic structures. If the magnetic field is weaker than in its surroundings, it appears darker; if stronger, it glows brighter. Therefore, the striations are believed to be signatures of subtle yet powerful magnetic fluctuations, which alter the density and opacity of the solar plasma. These slight shifts are only detectable thanks to the telescope's Visible Broadband Imager (VBI), which operates in the G-band — a specific range of visible light that highlights areas with strong magnetic activity. Related Stories: — The sun's magnetic field will flip soon. Here's what to expect — How the Sun's Magnetic Field Works — Magnetic fields appear to be as old as the universe itself. What created them? Unraveling the sun's magnetic architecture is key to understanding phenomena like solar flares, eruptions and coronal mass ejections (CMEs), which drive space weather and can impact Earth. The team's findings were published May 20 in The Astrophysical Journal Letters.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store