logo
A 'groundbreaking' ocean discovery may be a clue about extraterrestrial life

A 'groundbreaking' ocean discovery may be a clue about extraterrestrial life

USA Today2 days ago
Scientists say the findings help explain how life can exist in extreme environments using the chemical compound methane instead of sunlight.
Strange animals that get their energy from chemical reactions instead of the sun have been discovered at the bottom of ocean trenches up to 31,000 feet deep in the northwest Pacific between Russia and Alaska, a new study reports.
Scientists say the findings shed new light on the potential for life to exist in extreme environments using the chemical compound methane instead of sunlight. The animals were discovered by researchers using a human-crewed submersible vehicle.
"What makes our discovery groundbreaking is not just its greater depth – it's the astonishing abundance and diversity of chemosynthetic life we observed," said marine geochemist Mengran Du of the Institute of Deep-sea Science and Engineering, part of the Chinese Academy of Sciences, one of the authors of the research published July 30 in the peer-reviewed British journal Nature.
The authors suggest that similar communities may be more widespread than previously thought, and their findings challenge views about how the ecosystems might be supported. "Even though living in the harshest environment, these life forms found their way in surviving and thriving," Du said.
To some, the findings prompt questions about the potential for finding life on other planets.
Marine geologist and study co-author Xiaotong Peng said "we suggest that similar chemosynthetic communities may also exist in extraterrestrial oceans, as chemical species like methane and hydrogen are common there."
Could this kind of life be found on other planets?
Du told USA TODAY that similar chemosynthetic life forms could exist on Jupiter's moon Europa, or even Saturn's moon Enceladus.
Europa might be the most likely: "Europa's ocean is considered one of the most promising places in the solar system to look for life beyond Earth," according to NASA.
"There is very strong evidence that the ingredients for life exist on Europa," said planetary scientist Bonnie Buratti of NASA's Jet Propulsion Laboratory, who was not part of this study.
At the bottom of Europa's ocean, where the water meets the rocky mantle, there may be thermal vents where heat releases chemical energy. "They may be similar to thermal vents in the deep oceans of the Earth where primitive life exists and where life may have originated on the Earth," Buratti said.
Europa Clipper will tell us more
NASA hopes the Europa Clipper spacecraft will help "determine whether (Europa's) subsurface ocean harbors a habitable environment," Buratti said.
She added that the current thinking is that life arose in the depth's of the Earth's oceans, so seeking a similar environment on Europa is the first step to answering questions about undersea life on other planets or moons.
"Europa is the first ocean world to be studied in detail. Other bodies in the Solar System, such as Titan, Enceladus, possibly Ganymede and even Pluto, as well as many exoplanets or exomoons could also harbor habitable environments similar to those on Earth," she told USA TODAY. "We'll know much more after we get some results from Europa Clipper, starting in 2030."
More: NASA's Europa Clipper launches in search for 'ingredients of life' on Jupiter's icy moon
On Earth, amazing deep sea tube worms and clams
Researchers found animal communities – dominated by tube worms and clams – during a series of dives to the bottom of the Kuril-Kamchatka and Aleutian trenches.
The ecosystems were discovered at depths greater than the height of Mount Everest, Earth's tallest peak. The deepest one was 31,276 feet below the ocean surface in the Kuril-Kamchatka Trench. This was almost 25% deeper than such animals had previously been documented anywhere on Earth.
This environment harbors "the deepest and the most extensive chemosynthetic communities known to exist on our planet," said marine geologist and study co-author Xiaotong Peng.
The study reported that organisms such as these that live in extreme environments need to adapt to produce energy in different ways. Known as "chemosynthesis-based communities," they derive their energy from chemical reactions rather than from photosynthesis, which requires sunlight.
Such communities can be found in deep sea habitats where chemicals such as hydrogen sulfide and methane seep from the sea floor, according to the study.
Contributing: Reuters
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Could Comet 3I/Atlas Be A Threat? Here's What Experts Are Saying
Could Comet 3I/Atlas Be A Threat? Here's What Experts Are Saying

Yahoo

time2 hours ago

  • Yahoo

Could Comet 3I/Atlas Be A Threat? Here's What Experts Are Saying

On the 1st of July 2025, the Asteroid Terrestrial-Impact Last Alert System (ATLAS) in Chile spotted a new comet entering our solar system. This comet was named 3I/ATLAS, as it's only the third interstellar object humans observed passing through our solar system. The previous two interstellar bodies discovered were 1I/'Oumuamua (spotted in 2017), and 2I/BORISOV (detected in 2019). It seems that 3I/ATLAS is similar to 2I/BORISOV by its icy composition. Beyond that, we don't know much about the new interstellar visitor. Scientists rush to observe 3I/ATLAS and discover as much as they can, as it's predicted by its current trajectory and speed to leave our solar system by the end of the year. It will come closest to our sun in late October 2025, and the sun will melt some of its ice, which means 3I/ATLAS might get a robust comet tail composed of vapor and dust. Currently, this comet has a faint coma, the cloud of dust and gas that surrounds its nucleus. But this might change with its approach to the sun. Another interesting fact is that 3I/ATLAS will pass through Mars' orbit, and we don't know what will happen then. The fact that it was ATLAS that first discovered this comet got some people concerned. The Asteroid Terrestrial-Impact Last Alert System has a defensive nature. It's designed to spot and warn us about comets, asteroids, or other space objects that might be on a collision course with Earth. However, according to NASA, the interstellar object will most likely fly far enough from our planet without posing any danger. Read more: This Is How Most Life On Earth Will End What NASA Has To Say The ATLAS observatory in Chile is part of NASA's early warning program, spotting and defining all near-Earth objects (NEOs), especially if they're asteroids and comets that could strike our planet. ATLAS uses a network of wide-field telescopes that scan the night sky above Earth 24/7. Although designed for planetary defense against hazardous space objects, ATLAS is capable of detecting non-threatening, but scientifically interesting objects as well. The telescopes that are part of this defensive network are based in several observatories around the globe (South Africa, California, and Chile, to name a few), providing the researchers with round-the-globe coverage of the night sky. Of course, when 3I/ATLAS was first discovered, the first things determined were its trajectory and velocity. It was concluded that this comet is traveling at the speed of 137,000 miles/hour (61km/s), and the closest it will approach Earth is at 1.8 astronomical units (170 million miles, or 270 million kilometers, from Earth). NASA has ultimately concluded that 3I/ATLAS poses no threat to our planet. That said, the most interesting known fact about this interstellar visitor is its age. Following its current trajectory, scientists were able to determine 3I/ATLAS originated in a part of the Milky Way that we know is older than our solar system; meaning it's potentially older than 4.6 billion years old. It's estimated that 3I/ATLAS is around 7 billion years old, making it the oldest comet observed by humans so far. Could It Be An Alien Probe? Although very little is known about 3I/ATLAS so far, there are many interesting theories surrounding this interstellar visitor. Harvard-based astrophysicist Abraham Loeb and colleagues from the UK's Initiative for Interstellar Studies, Adam Hibbert and Adam Crowl, believe this interstellar object is not a comet at all; but an alien probe coming from afar to scan Earth and its surroundings. This is not the first time Loeb has suggested such a thing. In 2017, when Oumuamua was discovered, he claimed it was an alien probe due to its unusual shape, acceleration, reflectivity, and lack of trailing gases. Although he didn't come out with any specifics about 3I/ATLAS, Loeb warns that any interstellar object should be observed as possible alien technology. As of now, there's no evidence that 3I/ATLAS is anything but an interstellar comet passing through our solar system. It was lucky that ATLAS detected it, as it is believed millions of such objects pass near or through our system without ever being detected. Scientists such as Loeb might not be completely wrong, however. 3I/ATLAS is a unique interstellar comet, and we should pay more attention to it. Read the original article on BGR. Solve the daily Crossword

James Webb Finds Evidence of Free-Floating Planets So Large They Can Gather Their Own Planetary Systems
James Webb Finds Evidence of Free-Floating Planets So Large They Can Gather Their Own Planetary Systems

Yahoo

time9 hours ago

  • Yahoo

James Webb Finds Evidence of Free-Floating Planets So Large They Can Gather Their Own Planetary Systems

So much for heliocentrism. An international team of astronomers using observations made with the James Webb Space Telescope have found evidence of massive planets out there that're capable of forming their own planetary systems — without a star. These planets would be the center of something like a mini version of our solar system where other, smaller planets revolve around it. But without the light of a star, these systems, if they exist, would go largely overlooked by our telescopes, lost to the dark void of space. The work, a new study accepted for publication in the The Astronomical Journal, focuses on free-floating "rogue" planets which are not gravitationally bound to a star. While some rogue planets are first formed around a stellar object before being ejected from their system, the astronomers believe these ones may have formed from the same mechanism that gives birth to stars. "These discoveries show that the building blocks for forming planets can be found even around objects that are barely larger than Jupiter and drifting alone in space," lead author Belinda Damian, an astronomer at the University of St Andrews in Scotland, said in a statement about the work. "This means that the formation of planetary systems is not exclusive to stars but might also work around lonely starless worlds." Using James Webb observations taken between August and October 2024, the astronomers examined eight free-floating planets. With masses between five to ten times that of Jupiter, these belong to a class of objects believed to be the lowest mass objects that form from the collapse of the giant gas clouds that are sometimes referred to as stellar nurseries, as they're typically associated with star formation. For one reason or another, these objects didn't accumulate enough mass to sustain nuclear fusion reactions in their cores and become proper stars. These shouldn't be confused with brown dwarfs, however, which are much more massive substellar objects that are dozens of times heavier than Jupiter that also fail to kickstart nuclear fusion, earning them the moniker of "failed" stars. In this latest work, the astronomers detected excess emissions in the infrared spectra of these objects, showing that six of them have emissions associated with warm dust. This indicates the presence of a disk, or a circumstellar cloud of gas and dust that surrounds the planet. In itself, this isn't unusual, and such disks have been detected around rogue planets before. Around stars, these disks, referred to as protoplanetary disks, are where dense regions of gas and dust can coalesce to form planets, and are the leftover material from the star's formation which didn't get sucked into its collapsing core. But the kicker here is that the scientists have detected signs that the rogue planets' disks are already exhibiting the crucial first steps of planetary formation in the form of harboring silicate grains, which appear to be growing and crystallizing. These dusty grains can clump together to form planetesimals, the large, solid objects that are the building blocks of a baby planet. This is the first detection of silicate grains around a planetary mass object, the authors said. And it pairs tantalizingly with their previous study which showed that the rogue planet disks can last for millions of years, providing more than enough time to incubate inchoate worlds. "Taken together, these studies show that objects with masses comparable to those of giant planets have the potential to form their own miniature planetary systems," coauthor Aleks Scholz, who is also a St Andrews astronomer, said in the statement. "Those systems could be like the solar system, just scaled down by a factor of 100 or more in mass and size. Whether or not such systems actually exist remains to be shown." Ironically, then, maybe our ancestors weren't totally off the mark with their whole geocentrism fixation — they just had the wrong planetary system in mind. More on exoplanets: James Webb Spots Planets Forming Into Solar System in Real Time, Like an Organism's First Cells Solve the daily Crossword

Venus and Jupiter conjunction 2025: How to see two iconic planets meet in the morning sky
Venus and Jupiter conjunction 2025: How to see two iconic planets meet in the morning sky

Yahoo

time11 hours ago

  • Yahoo

Venus and Jupiter conjunction 2025: How to see two iconic planets meet in the morning sky

When you buy through links on our articles, Future and its syndication partners may earn a commission. If you set your alarm clock for 4 a.m. local time this week and head outside to a location with a clear and unobstructed view of the eastern horizon, you'll be able to catch sight of the two brightest planets, Venus and Jupiter. The winter constellation Orion will be off to their right. During this upcoming week, you'll be able to watch as they get closer to each other with each passing morning. On Aug.6, the two planets will be separated by 5.8 degrees; just a little more than a half fist apart. By Aug. 10, the gap between the two will have closed to just two degrees. Remember that your clenched fist held at arm's length measures roughly 10 degrees. The time frame from Aug. 12 through Aug. 20 will be an exceptional time for predawn sky watchers, first with an eye-catching pairing of Venus and Jupiter on Aug. 12, followed a week later when the waning crescent moon drops by to join them. Venus and Jupiter will appear closest together on Tuesday morning, Aug. 12. The moment of closest approach (just 0.86 of a degree; less than twice the apparent diameter of the moon) will come when this "dynamic duo" is hovering above the east-northeast horizon across much of North America. Venus will dazzle at magnitude -4.0, while Jupiter, itself shining at a brilliant magnitude of -1.9, will appear to glow to the upper left of Venus. Your best view will come one-quarter up from the east-northeast horizon about 45 minutes before sunrise. They are both high enough at dawn to present reasonably steady images (on good mornings) but most interesting this month is to see the globes of both together in one fairly wide telescopic field-of-view on Aug. 11 or Aug. 12. Jupiter is more than twice the apparent diameter of Venus, and yet Venus is a far more effective reflector of sunlight because it is more than seven times closer to the sun compared to Jupiter. The moon pays a visit Then, one week later, on Tuesday, Aug. 19, although the gap between Venus and Jupiter will have widened to 7 degrees, a narrow crescent moon, 15 percent illuminated by the sun, will join them, making for a striking triangular configuration in the morning twilight. On this morning, the moon will appear about 8 degrees directly above Jupiter. Then, come the very next morning (Wednesday, Aug. 20), the crescent moon will have noticeably thinned to 8% and will appear to hover just 4.5 degrees to the upper left of Venus. Adding to the spectacle on both mornings will be the phenomenon known as Earthshine; sunlight reflected from Earth illuminates the night side of the moon, making its whole disk visible. Here is one of nature's beautiful sights and fits the old saying, "the old moon in the new moon's arms." In a pair of binoculars on Aug. 20, the moon will appear three-dimensional, like an eerie yellow and blue ball with diamond-like Venus blazing to its upper left. Upcoming get-togethers When Venus and Jupiter next get together, it will be in the evening sky late next spring, a few weeks before Independence Day, though not as close as what we will see this month. Generally speaking, conjunctions between Venus and Jupiter, as seen from the Earth, take place at mean intervals of 13 months, or more precisely 398.88 days, known as the synodic period of Jupiter (the time it takes Jupiter to return to the same position relative to the sun in the sky as seen from Earth). Check out the table below for future Venus-Jupiter pairings for the rest of this decade. 2026 June 9 Evening sky 1.6 degrees 2027 Aug. 26 Evening sky 0.5 degree 2028 Nov. 9 Morning sky 0.6 degree 2029 Sept. 7 Evening sky 1.7 degrees 2030 Nov. 20 Morning sky 0.6 degree Sometimes, the interval between two successive Venus-Jupiter conjunctions is only ten months, as in the case of August 2025 and June 2026, but in other situations, the interval can be as much as 15 months (such as from August 2027 to November 2028). Inevitably, some conjunctions cannot be observed because they occur too close to the sun in the sky. This will be the case, for instance, for the conjunctions in 2027 and 2030. On these occasions, the planets will be positioned (respectively) only 4 and 8 degrees from the blindingly bright solar disc. The 24-year cycle The sidereal revolution periods (sidereal means "with respect to the stars") of Venus, Earth and Jupiter are — respectively — 224.70, 365.25 and 4,332.58 days. If we multiply the sidereal period of Venus by 39 (8763.3 days), Earth by 24 (8766 days) and Jupiter by 2 (8665.16 days) they come very close to replicating the same type of conjunction under nearly identical conditions (occurring approximately about a week later in the calendar) every 24 years. Check out the table below. Provided are the dates, the separation between the two planets in angular degrees and the elongation or angular distance of the two planets from the sun. Date Separation Elongation 1929 July 14 2.2 degrees 45.1 degrees 1953 July 23 1.9 degrees 43.2 degrees 1977 July 30 1.6 degrees 41.0 degrees 2001 Aug. 5 1.2 degrees 38.6 degrees 2025 Aug. 12 0.9 degrees 35.2 degrees Notice how the two planets are getting progressively closer to each other with each passing 24-year cycle. The closest observable conjunction between the two will come on September 4, 2121, when they will be separated by a mere 0.13 degrees, or about one-quarter the apparent diameter of the moon, while low in the dawn twilight. TOP TELESCOPE PICK Want to see the Venus and Jupiter conjunction for yourself? The Celestron NexStar 8SE is ideal for beginners wanting quality, reliable and quick views of celestial objects. For a more in-depth look at our Celestron NexStar 8SE review. But this 24-cycle cannot go on forever, because while Jupiter can appear in any part of the sky, Venus can never get more than 47 degrees from the sun; so generally speaking, these Venus-Jupiter get-togethers occurring at 24-year intervals can last for no more than roughly 900 years. This current cycle began back in 1881, when an unusual triple conjunction between the two planets took place. The first two get-togethers came on Feb. 20 and May 14. But it was the third conjunction on June 20, 1881, in the morning sky, that began the current 24-year cycle. This will continue until the very last, an evening apparition on Jan. 30, 2746. Joe Rao serves as an instructor and guest lecturer at New York's Hayden Planetarium. He writes about astronomy for Natural History magazine, Sky and Telescope and other publications.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store