James Webb Space Telescope uncovers 300 mysteriously luminous objects. Are they galaxies or something else?
Hundreds of unexpectedly energetic objects have been discovered throughout the distant universe, possibly hinting that the cosmos was far more active during its infancy than astronomers once believed.
Using deep-field images from NASA's James Webb Space Telescope (JWST), researchers at the University of Missouri identified 300 unusually bright objects in the early universe. While they could be galaxies, astronomers aren't yet sure what they are for certain. Galaxies forming so soon after the Big Bang should be faint, limited by the pace at which they could form stars. Yet these candidates shine far brighter than current models of early galaxy formation predict.
"If even a few of these objects turn out to be what we think they are, our discovery could challenge current ideas about how galaxies formed in the early universe — the period when the first stars and galaxies began to take shape," Haojing Yan, co-author of the study, said in a statement from the university.
To discover these objects, the team applied a method called the "dropout" technique, which detects objects that appear in redder wavelengths but vanish in bluer, shorter-wavelength images. This indicates the objects are extremely distant, showing the universe as it was more than 13 billion years ago.
To estimate distances, the team analyzed the objects' brightnesses across multiple wavelengths to infer redshift, age and mass. JWST's powerful Near-Infrared Camera and Mid-Infrared Instrument are designed to detect light from the farthest reaches of space, making them ideal for studying the early universe.
"As the light from these early galaxies travels through space, it stretches into longer wavelengths — shifting from visible light into infrared," Yan said in the statement. "This stretching, called redshift, helps us determine how far away these galaxies are. The higher the redshift, the closer the galaxy is to the beginning of the universe."
Next, the researchers hope to use targeted spectroscopic observations, focusing on the brightest sources. Confirming the newly found objects as genuine early galaxies would refine our current understanding of how quickly the first cosmic structures formed and evolved — and add to the growing list of transformative discoveries made by the JWST since it began observing the cosmos in 2022.
The findings were published June 27 in The Astrophysical Journal.
Solve the daily Crossword
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
11 minutes ago
- Yahoo
Here's How This Forgotten Healthcare Stock Could Generate Life-Changing Returns
Key Points CRISPR Therapeutics' first approved therapy, Casgevy, was a breakthrough. One of Casgevy's biggest achievements may be demonstrating the viability of CRISPR Therapeutics' strategy. The biotech company could soar if it can follow up that win with more clinical and regulatory milestones. 10 stocks we like better than CRISPR Therapeutics › Over the past few years, the market hasn't been kind to somewhat speculative, unprofitable stocks. CRISPR Therapeutics (NASDAQ: CRSP), a mid-cap biotech, fits that description. The company's shares are down by 24% since mid-2022. The S&P 500 is up 50% over the same period. Despite this terrible performance, there are reasons to believe that CRISPR Therapeutics could still generate life-changing returns for investors willing to be patient. Here's how the biotech could pull it off. CRISPR Therapeutics' first success CRISPR Therapeutics' first approval was for Casgevy, a treatment for sickle cell disease (SCD) and transfusion-dependent beta-thalassemia (TDT), which it developed in collaboration with Vertex Pharmaceuticals. Before Casgevy, no CRISPR-based gene-editing medicine had been approved. While it became the first, it still faces some challenges. Ex vivo gene-editing therapies require a complex manufacturing and administration process that can only be performed in authorized treatment centers (ATCs). Moreover, they're expensive. Casgevy costs $2.2 million in the U.S. Getting third-party payers on board for that is no easy feat. Still, CRISPR Therapeutics and Vertex Pharmaceuticals are making steady progress. As of the second quarter, CRISPR Therapeutics had achieved its goal of activating 75 ATCs. It had also secured reimbursement for eligible patients in 10 countries. The two companies estimate there are roughly 60,000 eligible SCD and TDT patients in the regions they have targeted. Let's say they continue to strike reimbursement deals and can count on third-party coverage for 70% of this target population (42,000 people), then go on to treat another 30% of that group in the next decade (12,600 patients). Assuming they could extend that $2.2 million price tag to those countries, Casgevy could generate more than $27.7 billion over this period. Based on its agreement with Vertex, 40% would go to CRISPR Therapeutics, or roughly $11.1 billion over a decade. That's not bad, but it's not that impressive either. So, while Casgevy could contribute meaningfully to CRISPR Therapeutics' results -- and may even reach blockbuster status at some point -- the medicine may primarily serve as a proof of concept to demonstrate that the biotech's approach can be effective. Substantial progress with its first commercialized product will help the stock price. But the company's performance will depend even more on future clinical and regulatory milestones, especially as it shows with Casgevy that it can manage the intricacies and complexities of marketing gene-editing medicines. Can the pipeline deliver? CRISPR Therapeutics has six candidates in clinical trials, which isn't bad at all for a mid-cap biotech company. One of its leading programs is CTX310, a potential therapy designed to help reduce low-density lipoprotein (LDL) cholesterol in patients with certain conditions. CTX310 is already producing encouraging clinical trial results. Additionally, it's an in vivo medicine, meaning it bypasses the need to harvest patients' cells to manufacture therapies; in vivo gene-editing treatments are easier to handle than their ex vivo counterparts. The company's path to creating life-changing returns hinges on its ability to deliver consistent clinical and regulatory wins over the next few years for CTX310 and other important candidates. If CRISPR Therapeutics can successfully launch several new products in the next five to seven years, its shares are likely to skyrocket. In the meantime, under this scenario, the company would succeed in making gene-editing medicines more mainstream. This would encourage third-party payers to get on board -- and healthcare institutions, and perhaps even governments, to help push for more ATCs, since there'd be a greater need to accommodate these treatments. Can CRISPR Therapeutics achieve this? In my view, the biotech stock is on the riskier side, but does carry significant upside potential. There's a (small) chance the gene-editing specialist will deliver life-changing returns in the next decade, but investors need to hedge their bets. It's best to start by initiating a small position in the stock, then progressively add more if CRISPR Therapeutics lands more wins. Should you invest $1,000 in CRISPR Therapeutics right now? Before you buy stock in CRISPR Therapeutics, consider this: The Motley Fool Stock Advisor analyst team just identified what they believe are the for investors to buy now… and CRISPR Therapeutics wasn't one of them. The 10 stocks that made the cut could produce monster returns in the coming years. Consider when Netflix made this list on December 17, 2004... if you invested $1,000 at the time of our recommendation, you'd have $668,155!* Or when Nvidia made this list on April 15, 2005... if you invested $1,000 at the time of our recommendation, you'd have $1,106,071!* Now, it's worth noting Stock Advisor's total average return is 1,070% — a market-crushing outperformance compared to 184% for the S&P 500. Don't miss out on the latest top 10 list, available when you join Stock Advisor. See the 10 stocks » *Stock Advisor returns as of August 13, 2025 Prosper Junior Bakiny has positions in Vertex Pharmaceuticals. The Motley Fool has positions in and recommends CRISPR Therapeutics and Vertex Pharmaceuticals. The Motley Fool has a disclosure policy. Here's How This Forgotten Healthcare Stock Could Generate Life-Changing Returns was originally published by The Motley Fool Sign in to access your portfolio

Associated Press
2 hours ago
- Associated Press
PACR Announces New Social Network for the Academic World
PACR introduces a new social network for academics, offering tools for collaboration, access to over 500 million research articles, and AI-driven insights for researchers. Global, August 17, 2025 -- Redefining Academic Collaboration PACR, the innovative social networking platform for researchers and academics, is revolutionizing how the global academic community connects, collaborates, and engages with research. With access to over 500 million academic articles, PACR creates a dynamic ecosystem where researchers can engage with their work, connect with peers, and contribute to the advancement of science. Unlike traditional academic platforms, PACR offers more than just a repository for papers. It provides real-time analytics, AI-powered tools, and collaborative spaces that allow users to track global rankings, connect with mentors, and participate in anonymous forums for open discussions. PACR is built by researchers for researchers, offering a holistic platform to share, discover, and amplify research. The Problem with Existing Platforms Many current academic networking platforms, such as ResearchGate and focus mainly on being repositories. These platforms offer little more than the ability to upload papers, without providing the engagement, visibility, or collaboration that modern researchers need. Dr. Felix, Founder of PACR, explains, 'Most platforms expect you to simply upload your work and stop there. We believe that is not enough for the modern researcher. In today's academic environment, visibility, interaction, and engagement are key to making research impactful.' PACR addresses these challenges by offering an integrated, interactive space for researchers that goes far beyond static profiles. The platform encourages real-time collaboration, provides AI-driven features, and fosters a community-driven environment that allows for the ongoing growth of the academic ecosystem. PACR as a Complete Ecosystem PACR is more than just an academic repository. It is a comprehensive ecosystem designed to support researchers at every stage of their journey. With direct access to over 500 million research articles indexed from Google Scholar, PubMed, CrossRef, and community uploads, PACR offers an extensive and diverse resource base for academics. The platform's real-time statistics and rankings allow authors and journals to track their global impact. This feature provides a deeper understanding of the influence of research, helping to highlight papers in ways traditional platforms cannot. Dr. Felix adds, 'PACR is not just a repository. It is a living ecosystem where research is discovered, discussed, and amplified.' Unique AI Capabilities for Smarter Engagement PACR's AI tools set it apart from other academic platforms by providing researchers with smarter ways to engage with their work. These tools enable users to summarize research papers, discover scientific products directly from articles, and interact with research in a way that fosters deeper understanding and engagement. 'We want to put the power of AI directly into the hands of researchers, making science easier to access and more actionable,' says Dr. Felix. By integrating cutting-edge AI technology, PACR enables researchers to save time, increase productivity, and gain valuable insights. The platform's AI capabilities ensure that users can navigate vast amounts of academic data quickly and efficiently. Fostering Community and Collaboration PACR emphasizes the importance of collaboration and community. It features an anonymous academic forum that allows researchers to engage in open and honest discussions without barriers. This unique feature promotes inclusivity, encouraging knowledge-sharing and meaningful interactions across disciplines and geographies. Additionally, PACR offers a mentorship and tutoring marketplace, where experienced academics can connect with the next generation of researchers. This feature helps bridge the gap between seasoned professionals and students or early-career researchers, fostering growth and development in the academic community. Dr. Felix remarks, 'Collaboration in science should not be limited by hierarchy or geography. PACR gives every researcher a voice.' Vision and Mission: A Movement for Open, Collaborative Science PACR's mission is to unify the fragmented academic ecosystem by providing an all-in-one platform for research access, visibility, networking, and collaboration. The company aims to make science more open, inclusive, and impactful for researchers at all levels. Whether a student, early-career researcher, or leading academic, PACR provides the tools and community needed to succeed. 'We believe that every researcher deserves more than just a static profile. PACR gives you a stage, a community, and a voice. On PACR, you are academia' says Dr. Felix. About PACR PACR is an innovative social network designed specifically for the academic world. Its mission is to create an open, collaborative, and impactful ecosystem that connects researchers globally. With access to over 500 million research articles, advanced AI tools, and collaborative spaces for meaningful engagement, PACR empowers researchers to share, discover, and amplify their work. PACR is built to help researchers not just share their research but make it more visible, discover new insights, and collaborate with peers worldwide. Media Contact: Dr. Felix PACR Email: [email protected] Website: [Launching October 2025] Instagram: PACR on Instagram LinkedIn: PACR on LinkedIn Contact Info: Name: Dr. Felix Email: Send Email Organization: PACR Website: Release ID: 89167503 Should there be any problems, inaccuracies, or doubts arising from the content provided in this press release that require attention or if a press release needs to be taken down, we urge you to notify us immediately by contacting [email protected] (it is important to note that this email is the authorized channel for such matters, sending multiple emails to multiple addresses does not necessarily help expedite your request). Our efficient team will promptly address your concerns within 8 hours, taking necessary steps to rectify identified issues or assist with the removal process. Providing accurate and dependable information is central to our commitment.


The Hill
2 hours ago
- The Hill
Critics shouldn't block NASA's nuclear path to a moon base
Sean Duffy, NASA's interim administrator, proved that the U.S. is serious about establishing a lunar base when he announced the deployment of a 100-kilowatt nuclear reactor on the moon by 2030. The idea, although a sound one, is not without its critics. The announcement that the first element of a lunar base will be a nuclear reactor was logical. Nuclear power, unlike solar, is available 24/7 and thus does not require backup batteries during periods when the sun is not available. That the reactor is first means that every other element of the lunar base can be hooked up and powered up immediately. As NPR notes, a 100-kilowatt reactor on Earth would be able to power 70 to 80 private homes in the United States, so it could power a decent-sized lunar base. It would have to withstand the extremes of heat and cold on the moon, not to mention the possibility of moonquakes and meteor strikes. Instead of water to cool it, the reactor would simply radiate the heat it creates into space. The cost would be about $3 billion. Space lawyer Michelle Hanlon describes some of the legal aspects of placing a nuclear reactor on the moon, especially in context of the space race with China. While the Outer Space Treaty prohibits claims of national sovereignty on the moon, the establishment of a nuclear reactor, especially with a lunar base attached to it, grants the nation-state that does it some measure of control over the surrounding territory. Its Article IX requires that states act 'with due regard to the corresponding interests of all other States Parties to the Treaty.' The practical effect of the Article IX provision is that the first country to establish a lunar base on the moon's south pole would be able to claim control over some prime real estate, important where ice mining is likely to be an essential enterprise. Duffy is therefore correct that the U.S. and its allies should be first with a nuclear reactor and a lunar base before China can establish its own and thus exert control. The idea of a nuclear-powered lunar base is not without its critics. For example, a CBS News host opined that colonizing the moon was akin to the colonization of native peoples on Earth by European powers. Celebrity astrophysicist Neil deGrasse Tyson set him straight by pointing out that no native peoples exist on the moon or anywhere else in the solar system beyond Earth. The exchange elicited eyerolling on the Fox News show 'The Five.' But even there, some griping occurred. Dana Perino, who used to work for President George W. Bush, expressed considerable ennui about the whole concept of space travel. From the perspective of someone who has seen a space shuttle launch in person and watched men walk on the moon live on television, the attitude seems to be bizarre and dispiriting. Tyrus, the former wrestler turned social and political commentator, trotted out the 'let's solve problems on Earth before we go into space' trope that has been around since the beginning of the space age. The obvious answer has always been, 'Do both.' Ross Marchand, writing for Real Clear Science, noted the $37 trillion national debt and then claimed that building a lunar base would be just too expensive. He undermined his argument by comparing the 100-kilowatt lunar nuclear power plant to the 1-gigawatt reactors that exist on Earth and cost $10 billion to build (largely because of permitting and environmental regulation problems). Then he increased the estimated cost by a factor of 10 'or more.' Although NASA projects often do suffer cost overruns, $3 billion to $100 billion would be a little much, even for the space agency with its history of inefficiency. Marchand also trotted out the 'robots can explore space cheaper and better than humans' claim that was soundly debunked by the late, great lunar geologist Paul Spudis. In fact, returning to the moon and going on to Mars also polls well and has bipartisan political support, even it still has its critics. No great endeavor ever undertaken since the beginning of civilization has not had people saying it can't or shouldn't be done. The International Space Station, for example, drew fierce opposition and was almost cancelled more than once. The orbiting space laboratory is currently churning out a stream of scientific discoveries and technological innovations, confounding its early critics, who are long since forgotten. The lunar base and even Elon Musk's planned Mars colony will undergo a similar process. Future generations will find it difficult to imagine a universe where humans just occupied one world. Mark R. Whittington, who writes frequently about space policy, has published a political study of space exploration entitled ' Why is It So Hard to Go Back to the Moon? ' as well as ' The Moon, Mars and Beyond,' and, most recently,' Why is America Going Back to the Moon? ' He blogs at Curmudgeons Corner.