
The ‘Profound' Experience of Seeing a New Color
The color 'olo' can't be found on a Pantone color chart. It can be experienced only in a cramped 9-by-13 room in Northern California. That small space, in a lab on the UC Berkeley campus, contains a large contraption of lenses and other hardware on a table. To see olo, you need to scootch up to the table, chomp down on a bite plate, and keep your head as steady as you can. A laser will be fired into one of your eyes, targeting more than a thousand of your cone cells. (The scientists will have mapped their location on your retina in advance.) The lasers will activate your color vision like nothing in the natural world: A small square of exotic color will appear, just off-center from the focal point of your vision, against a background field of gray. It may flicker a bit, depending on what's happening with the contraption, but it will remain unmistakably there.
Austin Roorda, an optometry professor at Berkeley, may have been the first person in the world to experience the new color. At the very least, he was the second, he told me on a recent call. (Ren Ng, the other Berkeley professor who co-leads the research group with Roorda, told me that he thinks he went second.) Roorda's name is listed 12th among the 13 authors of the academic paper, published last Friday, that announced the new color's creation—or its discovery, depending on your philosophical view of the matter. I asked him how he'd qualified for such an honor. 'I have a habit of wanting to be a subject in all experiments in my lab,' he said. It wasn't an IMAX-scale spectacle, Roorda said. But even so, in the aftermath, he felt a kind of euphoria. He described the color as a beautiful, ultra-intense teal. 'As a scientist, the experience was profound.'
James Fong, a Ph.D. student at Berkeley, was the first author on the paper—and the one to name olo—but he has never seen the new color. He and the other grad students on the project drew straws to decide who would get their retinas mapped, and he was unlucky. As a result, Fong has become afflicted by a very specific kind of color blindness, which he wishes urgently to cure: When the next set of slots for retina mapping opens up, he will raise his hand, he told me. 'I would be disappointed if I finished my Ph.D. program without seeing the color that I spent a good fraction of my time here studying.'
As a rule, scientists do not lead especially glamorous lives, especially not right now. But they do occasionally get to see extraordinary things before anyone else. Sometimes, this privilege is enjoyed—or seized—by one person, as when Howard Carter allowed himself a candlelit glimpse into King Tut's unsealed tomb the afternoon before he fully surveyed its glittering wonders with Egyptian authorities. Other times, a whole group gets to revel in the exclusivity: The Soviet scientists who launched the Luna 3 probe in 1959 kept the first images of the moon's dark side to themselves for days. The exclusivity period can run much longer than mere hours and days: more than 50 years passed from the moment that Jacques Piccard and Don Walsh saw the bottom of the Mariana Trench from the porthole window of their bathyscaphe to James Cameron's return trip there in a high-tech submersible. These experiences are rarefied, but they do not always trigger joy. The astronaut Mike Massimino has said that he felt an extreme loneliness upon seeing Earth from space, because he could not share it with the people whom he loved most in the world.
Roorda had an inkling that his research team was going to see something special. For more than five years they'd been trying to conjure up novel human experiences of color. They seemed to have a lead on others who work in the field. Human beings are visual creatures; sight is our primary sensory window onto the world. For most of us, the waking mental experience is dominated by a constant stream of color images generated by the eye and the cortex, but exactly how those images are constructed by the mind is not yet understood. By giving the visual system an entirely new stimulus—a color that does not exist in nature—Roorda's team was hoping to tease out the different roles that the eye and the brain play in creating the cinema of our lives.
Verifying that Roorda and the other participants had indeed seen a novel color was tricky. Only one person witnesses the experience of color: the person who sees it. Philosophers have fretted about color's inescapable subjectivity since the late 18th century, when John Dalton discovered red-green color blindness—his own. (Dalton noted that a pink geranium looked dramatically different when viewed in broad daylight than in evening candlelight, and was astonished when his friends told him that they experienced no such effect.) Zed Adams, a philosophy professor at the New School who specializes in the experience of color, told me that many 20th-century philosophers were haunted by the idea that we're all trapped in our own perceptual world. Everyone wants to believe that they see the true rainbow, but no one can be sure that they do, Adams said.
The team at Berkeley eventually hit upon a way to confirm that the colors that were experienced by the five people who took part in the experiment were roughly similar. Their method was ingenious, according to Adams, who was not involved in the work. First, the team produced olo by targeting a specific set of color-sensing cone cells in each participant's retina—the so-called M cones, which are never activated on their own in natural settings. Then, while the subjects were experiencing that color, they rated its intensity and performed image-matching exercises, comparing olo with its nearest natural cousins. This process couldn't tell the researchers what olo was, in a deeper sense, but it did suggest that the five subjects of the study had experienced an image with roughly the same degree of color saturation. All five also described the color as being a sort of teal or a mix of blue and green. Whether they were experiencing the same teal or blue-green remains a mystery, of course.
Olo does not—and cannot—exist outside this peculiar technological setup, or one very much like it. In that sense, it's a cyborg experience that a human being can have only with the help of a machine. But Fong hopes that it might be a first step toward enhancing human color vision in the everyday world. Scientists have already used gene therapies to add a third set of cone pigments to the retinas of male squirrel monkeys, which are born with only two. It appears to give the monkeys the ability to access new colors, although that research is not yet definitive.
Some human females have four types of cones in their retinas, instead of three. For most of them, the fourth cone doesn't lead to richer color vision, at least not measurably. But there is one woman, perhaps the most famous research subject in all of color science— cDa29 —who is able to distinguish among hues better than those of us who have three cones. Researchers in Roorda and Ng's lab are trying to figure out whether this sensory superpower can someday be engineered into an adult human. They've been laying the groundwork by using their targeted lasers to mimic the patterns of retinal stimulation that a person with four kinds of cones would experience, but in people with three cones. If (and it's a big if) people's brains are able to process the same fine color distinctions that cDa29 can, gene therapy could perhaps be used to add a fourth kind of cone to human retinas. In just weeks or months, they could find themselves in a new sensory world, populated by 10 times as many gradations of color.
Those kinds of treatments are still a ways off. In the meantime, Fong is having fun fielding all the reactions to the olo paper. Reporters from all over the world have stormed into his inbox, demanding interviews. Many have asked to be rigged up to the machine in Berkeley to get a glimpse of the new color. Artists have also been in touch. (Maybe James Turrell could make use of this technology.) Stuart Semple, an artist from the U.K., has started taking preorders for a paint based on olo. It's called 'YOLO.'
Fong told me that he takes particular pride in having named the color. The name olo is a play on 0 1 0, which corresponds to the types of cone cells—the 1 is for Ms—that were stimulated to generate it. The team had considered all kinds of alternatives but agreed that his solution was the most elegant. Fong was delighted just thinking about it. 'How many people have named a color?' he asked me. Fong said that he has come to love olo. He said he now prefers it to red, orange, yellow, green, blue, or purple. He might be the only person in the world who has never seen their favorite color.

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


CNN
8 hours ago
- CNN
The science of sleep paralysis, a brain-body glitch making people see demons and witches
Sign up for CNN's Sleep, But Better newsletter series. Our seven-part guide has helpful hints to achieve better sleep. Baland Jalal lay in bed terrified, experiencing his own real-life horror film. Newly awake, the 19-year-old could see his surroundings but couldn't move or speak, and he didn't know why. He thought, ''My God, what do I do?'' Jalal, now 39, said of that moment in 2005. 'I tried to call my mom (and) dad, but no words would emerge from my throat. … I had this ominous presence of a monster, and it lifted my legs up and down. 'It strangled me, trying to kill me. And I was 100% sure that I was going to die,' Jalal added. 'It literally feels like all the evil of the universe is condensed into a bubble, and it's in your bedroom.' This type of hallucination is a hallmark for many people with sleep paralysis. It occurs during transitions into or out of rapid eye movement, or REM, sleep, similar to a traffic jam at a busy intersection — your brain, awake and alert, and body, still asleep and immobilized, collide momentarily, said Dr. Matthew P. Walker, director of the Center for Human Sleep Science at the University of California, Berkeley, via email. Following deep sleep, REM sleep is the next critical phase of sleep cycles, characterized by more dreaming that's also extra vivid and lifelike, and by faster heart rate and breathing. It's essential for memory, concentration, mood regulation and immune function. Jalal's experiences propelled him to study this phenomenon around the world. He aimed to discover the cause of sleep paralysis, he said, and why some people with the diagnosis 'have these powerful encounters where it feels like evil of epic proportions.' He has since earned a doctorate in psychiatry and is now a researcher in Harvard University's psychology department and a leading expert on sleep paralysis. He also treats patients struggling with it. An estimated 30% of people worldwide experience at least one episode of sleep paralysis in their lifetime, according to the Cleveland Clinic. How many of those people have recurring and impairing sleep paralysis isn't clear, but the percentage is likely low, Jalal said. Here's what else you should know about sleep paralysis and how it can be managed. In REM sleep, our bodies are paralyzed so we don't act out our dreams and risk hurting ourselves or others, Jalal said. Sleep paralysis episodes are usually only a few minutes long but can last up to 20 minutes, according to the Cleveland Clinic. During sleep paralysis, however, 'we regain consciousness before the muscles regain their freedom from REM-induced paralysis,' said Walker, who is also a professor of neuroscience and psychology at the University of California, Berkeley About 40% of people with sleep paralysis have visual, auditory or tactile hallucinations, such as pressure on one's chest or feeling out of body, Jalal said. For about 90% of those individuals, the illusions are terrifying. They can include ghosts or cat- or alien-like creatures, and their actions can be as innocuous as simply approaching them or as nefarious as molesting or trying to kill them. In Jalal's academic travels, he discovered the contents and interpretations of hallucinations, views on what causes sleep paralysis, and episode frequency and duration can all also have a cultural basis. People living in Egypt and Italy, for example, would often see witches and evil genies, hold them responsible and think they could die from sleep paralysis, Jalal said. People in Denmark, Poland and parts of the United States, on the other hand, have less supernatural or exotic explanations and less fear. 'Why do we see these monsters? Is it the dreaming imagery … that's spilling over into conscious awareness?' Jalal said. 'My answer to that is, according to my research, no, not exactly. But it's part of it.' When you're aware yet paralyzed and confused, your natural reaction is to escape that situation. Your brain is bombarding your body with signals to move, but your body can't return any feedback. Jalal's theory, in short, is that your brain says, 'to hell with it' and concocts a story it thinks your body must be facing to be experiencing such bizarre symptoms. The reduced activity in your prefrontal cortex — responsible for reason and logic — also contributes to hallucinations becoming 'extremely realistic and emotionally charged, amplified by an overly active amygdala, the brain's emotional alarm center,' Walker said. Though scientists know that wake-sleep glitch is what's happening during a sleep paralysis episode, they're not entirely sure why. But there are several factors that can increase the risk of fragmented sleep and sleep paralysis. Those factors include stress and related conditions such as anxiety, post-traumatic stress disorder (PTSD), bipolar disorder and panic disorder, experts said. Much of Jalal's sleep paralysis occurred when he was in school. Now when he has an episode once or twice per year, it's usually during a high-stress period, he said. (Once you've experienced sleep paralysis, you can be conscious of that during an episode but still feel afraid.) Other common contributors are sleep deprivation, jet lag, an irregular sleep schedule, sleep disorders such as narcolepsy, and genetic factors, Walker and Jalal said. Obstructive sleep apnea, substance use disorder and some medications — such as those for attention deficit hyperactivity disorder — can also raise risk, according to the Cleveland Clinic. As scary as sleep paralysis may sound, it's not actually dangerous, experts said. But depending on how recurring it is, sleep paralysis can be a sign of an underlying sleep disorder, Jalal said. Regular episodes can also lead to anxiety around sleep and then avoidance of sleep, Jalal said. This pattern can interfere with your daily energy and ability to function. And if you often have frightening hallucinations, that can lead to anxiety or trauma-like symptoms. Sleep paralysis can be significantly alleviated with several practices or treatments, Walker said — starting with healthy sleep habits, for one. That includes seven to nine hours of restful sleep nightly. Maintaining a sleep schedule consistent in quality and quantity 'acts like tuning your internal clock, reducing the chance of disruptive wake-sleep overlaps — much like ensuring all parts of an orchestra are synchronized for perfect harmony,' Walker said. Also prioritize stress management, by using, for example, mindfulness and relaxation exercises, Walker said. Therapies can relieve certain underlying issues triggering sleep paralysis, including cognitive behavioral therapy, especially the version for people with insomnia. In more serious situations, medications are sometimes used, Walker said. Those include SSRI (selective serotonin reuptake inhibitor) or tricyclic antidepressants that can help manage a smooth flow between sleep stages or even reduce the REM phase of sleep. Generally, boosting the brain's serotonin levels somehow compensates for the loss of the REM phase, Jalal said. But rarely, long-term antidepressant use has been linked with REM sleep behavior disorder. While the aforementioned treatments can help reduce the frequency or length of sleep paralysis episodes, there isn't yet a gold-standard treatment that can stop an episode once it's happening. Jalal has been trying to officially create one over the past decade, though, and it's self-inspired. Called meditation relaxation therapy, the treatment reduced sleep paralysis by 50% after eight weeks for six people with narcolepsy, compared with a control group of four participants, found a small pilot study Jalal published in 2020. He currently has another study of the same treatment with more participants underway at Harvard. And the steps of Jalal's therapy are as follows: Cognitively reappraise the meaning of the attack. Close your eyes and remind yourself that your experience is common and you won't die from it. Emotionally distance yourself from it. Tell yourself that since your brain is just playing tricks on you, there's no reason for you to be scared or risk the situation getting worse because of your own negative expectations. Focus on something positive. Whether it's praying or imagining a loved one's face, this refocusing can make thoughts more pleasant rather than monstrous. Relax your muscles and don't move. Some experts say trying to slightly move your fingers or toes one by one may help you come out of an episode sooner. But Jalal's fourth step advises against this movement since you'd still be sending signals to paralyzed muscles and maybe triggering hallucinations. Viewing your own biology in a more objective way by learning more about the scientific basis of sleep paralysis is also helpful, Jalal said.


CNN
9 hours ago
- CNN
The science of sleep paralysis, a brain-body glitch making people see demons and witches
Sign up for CNN's Sleep, But Better newsletter series. Our seven-part guide has helpful hints to achieve better sleep. Baland Jalal lay in bed terrified, experiencing his own real-life horror film. Newly awake, the 19-year-old could see his surroundings but couldn't move or speak, and he didn't know why. He thought, ''My God, what do I do?'' Jalal, now 39, said of that moment in 2005. 'I tried to call my mom (and) dad, but no words would emerge from my throat. … I had this ominous presence of a monster, and it lifted my legs up and down. 'It strangled me, trying to kill me. And I was 100% sure that I was going to die,' Jalal added. 'It literally feels like all the evil of the universe is condensed into a bubble, and it's in your bedroom.' This type of hallucination is a hallmark for many people with sleep paralysis. It occurs during transitions into or out of rapid eye movement, or REM, sleep, similar to a traffic jam at a busy intersection — your brain, awake and alert, and body, still asleep and immobilized, collide momentarily, said Dr. Matthew P. Walker, director of the Center for Human Sleep Science at the University of California, Berkeley, via email. Following deep sleep, REM sleep is the next critical phase of sleep cycles, characterized by more dreaming that's also extra vivid and lifelike, and by faster heart rate and breathing. It's essential for memory, concentration, mood regulation and immune function. Jalal's experiences propelled him to study this phenomenon around the world. He aimed to discover the cause of sleep paralysis, he said, and why some people with the diagnosis 'have these powerful encounters where it feels like evil of epic proportions.' He has since earned a doctorate in psychiatry and is now a researcher in Harvard University's psychology department and a leading expert on sleep paralysis. He also treats patients struggling with it. An estimated 30% of people worldwide experience at least one episode of sleep paralysis in their lifetime, according to the Cleveland Clinic. How many of those people have recurring and impairing sleep paralysis isn't clear, but the percentage is likely low, Jalal said. Here's what else you should know about sleep paralysis and how it can be managed. In REM sleep, our bodies are paralyzed so we don't act out our dreams and risk hurting ourselves or others, Jalal said. Sleep paralysis episodes are usually only a few minutes long but can last up to 20 minutes, according to the Cleveland Clinic. During sleep paralysis, however, 'we regain consciousness before the muscles regain their freedom from REM-induced paralysis,' said Walker, who is also a professor of neuroscience and psychology at the University of California, Berkeley About 40% of people with sleep paralysis have visual, auditory or tactile hallucinations, such as pressure on one's chest or feeling out of body, Jalal said. For about 90% of those individuals, the illusions are terrifying. They can include ghosts or cat- or alien-like creatures, and their actions can be as innocuous as simply approaching them or as nefarious as molesting or trying to kill them. In Jalal's academic travels, he discovered the contents and interpretations of hallucinations, views on what causes sleep paralysis, and episode frequency and duration can all also have a cultural basis. People living in Egypt and Italy, for example, would often see witches and evil genies, hold them responsible and think they could die from sleep paralysis, Jalal said. People in Denmark, Poland and parts of the United States, on the other hand, have less supernatural or exotic explanations and less fear. 'Why do we see these monsters? Is it the dreaming imagery … that's spilling over into conscious awareness?' Jalal said. 'My answer to that is, according to my research, no, not exactly. But it's part of it.' When you're aware yet paralyzed and confused, your natural reaction is to escape that situation. Your brain is bombarding your body with signals to move, but your body can't return any feedback. Jalal's theory, in short, is that your brain says, 'to hell with it' and concocts a story it thinks your body must be facing to be experiencing such bizarre symptoms. The reduced activity in your prefrontal cortex — responsible for reason and logic — also contributes to hallucinations becoming 'extremely realistic and emotionally charged, amplified by an overly active amygdala, the brain's emotional alarm center,' Walker said. Though scientists know that wake-sleep glitch is what's happening during a sleep paralysis episode, they're not entirely sure why. But there are several factors that can increase the risk of fragmented sleep and sleep paralysis. Those factors include stress and related conditions such as anxiety, post-traumatic stress disorder (PTSD), bipolar disorder and panic disorder, experts said. Much of Jalal's sleep paralysis occurred when he was in school. Now when he has an episode once or twice per year, it's usually during a high-stress period, he said. (Once you've experienced sleep paralysis, you can be conscious of that during an episode but still feel afraid.) Other common contributors are sleep deprivation, jet lag, an irregular sleep schedule, sleep disorders such as narcolepsy, and genetic factors, Walker and Jalal said. Obstructive sleep apnea, substance use disorder and some medications — such as those for attention deficit hyperactivity disorder — can also raise risk, according to the Cleveland Clinic. As scary as sleep paralysis may sound, it's not actually dangerous, experts said. But depending on how recurring it is, sleep paralysis can be a sign of an underlying sleep disorder, Jalal said. Regular episodes can also lead to anxiety around sleep and then avoidance of sleep, Jalal said. This pattern can interfere with your daily energy and ability to function. And if you often have frightening hallucinations, that can lead to anxiety or trauma-like symptoms. Sleep paralysis can be significantly alleviated with several practices or treatments, Walker said — starting with healthy sleep habits, for one. That includes seven to nine hours of restful sleep nightly. Maintaining a sleep schedule consistent in quality and quantity 'acts like tuning your internal clock, reducing the chance of disruptive wake-sleep overlaps — much like ensuring all parts of an orchestra are synchronized for perfect harmony,' Walker said. Also prioritize stress management, by using, for example, mindfulness and relaxation exercises, Walker said. Therapies can relieve certain underlying issues triggering sleep paralysis, including cognitive behavioral therapy, especially the version for people with insomnia. In more serious situations, medications are sometimes used, Walker said. Those include SSRI (selective serotonin reuptake inhibitor) or tricyclic antidepressants that can help manage a smooth flow between sleep stages or even reduce the REM phase of sleep. Generally, boosting the brain's serotonin levels somehow compensates for the loss of the REM phase, Jalal said. But rarely, long-term antidepressant use has been linked with REM sleep behavior disorder. While the aforementioned treatments can help reduce the frequency or length of sleep paralysis episodes, there isn't yet a gold-standard treatment that can stop an episode once it's happening. Jalal has been trying to officially create one over the past decade, though, and it's self-inspired. Called meditation relaxation therapy, the treatment reduced sleep paralysis by 50% after eight weeks for six people with narcolepsy, compared with a control group of four participants, found a small pilot study Jalal published in 2020. He currently has another study of the same treatment with more participants underway at Harvard. And the steps of Jalal's therapy are as follows: Cognitively reappraise the meaning of the attack. Close your eyes and remind yourself that your experience is common and you won't die from it. Emotionally distance yourself from it. Tell yourself that since your brain is just playing tricks on you, there's no reason for you to be scared or risk the situation getting worse because of your own negative expectations. Focus on something positive. Whether it's praying or imagining a loved one's face, this refocusing can make thoughts more pleasant rather than monstrous. Relax your muscles and don't move. Some experts say trying to slightly move your fingers or toes one by one may help you come out of an episode sooner. But Jalal's fourth step advises against this movement since you'd still be sending signals to paralyzed muscles and maybe triggering hallucinations. Viewing your own biology in a more objective way by learning more about the scientific basis of sleep paralysis is also helpful, Jalal said.


CNN
9 hours ago
- CNN
The science of sleep paralysis, a brain-body glitch making people see demons and witches
Sign up for CNN's Sleep, But Better newsletter series. Our seven-part guide has helpful hints to achieve better sleep. Baland Jalal lay in bed terrified, experiencing his own real-life horror film. Newly awake, the 19-year-old could see his surroundings but couldn't move or speak, and he didn't know why. He thought, ''My God, what do I do?'' Jalal, now 39, said of that moment in 2005. 'I tried to call my mom (and) dad, but no words would emerge from my throat. … I had this ominous presence of a monster, and it lifted my legs up and down. 'It strangled me, trying to kill me. And I was 100% sure that I was going to die,' Jalal added. 'It literally feels like all the evil of the universe is condensed into a bubble, and it's in your bedroom.' This type of hallucination is a hallmark for many people with sleep paralysis. It occurs during transitions into or out of rapid eye movement, or REM, sleep, similar to a traffic jam at a busy intersection — your brain, awake and alert, and body, still asleep and immobilized, collide momentarily, said Dr. Matthew P. Walker, director of the Center for Human Sleep Science at the University of California, Berkeley, via email. Following deep sleep, REM sleep is the next critical phase of sleep cycles, characterized by more dreaming that's also extra vivid and lifelike, and by faster heart rate and breathing. It's essential for memory, concentration, mood regulation and immune function. Jalal's experiences propelled him to study this phenomenon around the world. He aimed to discover the cause of sleep paralysis, he said, and why some people with the diagnosis 'have these powerful encounters where it feels like evil of epic proportions.' He has since earned a doctorate in psychiatry and is now a researcher in Harvard University's psychology department and a leading expert on sleep paralysis. He also treats patients struggling with it. An estimated 30% of people worldwide experience at least one episode of sleep paralysis in their lifetime, according to the Cleveland Clinic. How many of those people have recurring and impairing sleep paralysis isn't clear, but the percentage is likely low, Jalal said. Here's what else you should know about sleep paralysis and how it can be managed. In REM sleep, our bodies are paralyzed so we don't act out our dreams and risk hurting ourselves or others, Jalal said. Sleep paralysis episodes are usually only a few minutes long but can last up to 20 minutes, according to the Cleveland Clinic. During sleep paralysis, however, 'we regain consciousness before the muscles regain their freedom from REM-induced paralysis,' said Walker, who is also a professor of neuroscience and psychology at the University of California, Berkeley About 40% of people with sleep paralysis have visual, auditory or tactile hallucinations, such as pressure on one's chest or feeling out of body, Jalal said. For about 90% of those individuals, the illusions are terrifying. They can include ghosts or cat- or alien-like creatures, and their actions can be as innocuous as simply approaching them or as nefarious as molesting or trying to kill them. In Jalal's academic travels, he discovered the contents and interpretations of hallucinations, views on what causes sleep paralysis, and episode frequency and duration can all also have a cultural basis. People living in Egypt and Italy, for example, would often see witches and evil genies, hold them responsible and think they could die from sleep paralysis, Jalal said. People in Denmark, Poland and parts of the United States, on the other hand, have less supernatural or exotic explanations and less fear. 'Why do we see these monsters? Is it the dreaming imagery … that's spilling over into conscious awareness?' Jalal said. 'My answer to that is, according to my research, no, not exactly. But it's part of it.' When you're aware yet paralyzed and confused, your natural reaction is to escape that situation. Your brain is bombarding your body with signals to move, but your body can't return any feedback. Jalal's theory, in short, is that your brain says, 'to hell with it' and concocts a story it thinks your body must be facing to be experiencing such bizarre symptoms. The reduced activity in your prefrontal cortex — responsible for reason and logic — also contributes to hallucinations becoming 'extremely realistic and emotionally charged, amplified by an overly active amygdala, the brain's emotional alarm center,' Walker said. Though scientists know that wake-sleep glitch is what's happening during a sleep paralysis episode, they're not entirely sure why. But there are several factors that can increase the risk of fragmented sleep and sleep paralysis. Those factors include stress and related conditions such as anxiety, post-traumatic stress disorder (PTSD), bipolar disorder and panic disorder, experts said. Much of Jalal's sleep paralysis occurred when he was in school. Now when he has an episode once or twice per year, it's usually during a high-stress period, he said. (Once you've experienced sleep paralysis, you can be conscious of that during an episode but still feel afraid.) Other common contributors are sleep deprivation, jet lag, an irregular sleep schedule, sleep disorders such as narcolepsy, and genetic factors, Walker and Jalal said. Obstructive sleep apnea, substance use disorder and some medications — such as those for attention deficit hyperactivity disorder — can also raise risk, according to the Cleveland Clinic. As scary as sleep paralysis may sound, it's not actually dangerous, experts said. But depending on how recurring it is, sleep paralysis can be a sign of an underlying sleep disorder, Jalal said. Regular episodes can also lead to anxiety around sleep and then avoidance of sleep, Jalal said. This pattern can interfere with your daily energy and ability to function. And if you often have frightening hallucinations, that can lead to anxiety or trauma-like symptoms. Sleep paralysis can be significantly alleviated with several practices or treatments, Walker said — starting with healthy sleep habits, for one. That includes seven to nine hours of restful sleep nightly. Maintaining a sleep schedule consistent in quality and quantity 'acts like tuning your internal clock, reducing the chance of disruptive wake-sleep overlaps — much like ensuring all parts of an orchestra are synchronized for perfect harmony,' Walker said. Also prioritize stress management, by using, for example, mindfulness and relaxation exercises, Walker said. Therapies can relieve certain underlying issues triggering sleep paralysis, including cognitive behavioral therapy, especially the version for people with insomnia. In more serious situations, medications are sometimes used, Walker said. Those include SSRI (selective serotonin reuptake inhibitor) or tricyclic antidepressants that can help manage a smooth flow between sleep stages or even reduce the REM phase of sleep. Generally, boosting the brain's serotonin levels somehow compensates for the loss of the REM phase, Jalal said. But rarely, long-term antidepressant use has been linked with REM sleep behavior disorder. While the aforementioned treatments can help reduce the frequency or length of sleep paralysis episodes, there isn't yet a gold-standard treatment that can stop an episode once it's happening. Jalal has been trying to officially create one over the past decade, though, and it's self-inspired. Called meditation relaxation therapy, the treatment reduced sleep paralysis by 50% after eight weeks for six people with narcolepsy, compared with a control group of four participants, found a small pilot study Jalal published in 2020. He currently has another study of the same treatment with more participants underway at Harvard. And the steps of Jalal's therapy are as follows: Cognitively reappraise the meaning of the attack. Close your eyes and remind yourself that your experience is common and you won't die from it. Emotionally distance yourself from it. Tell yourself that since your brain is just playing tricks on you, there's no reason for you to be scared or risk the situation getting worse because of your own negative expectations. Focus on something positive. Whether it's praying or imagining a loved one's face, this refocusing can make thoughts more pleasant rather than monstrous. Relax your muscles and don't move. Some experts say trying to slightly move your fingers or toes one by one may help you come out of an episode sooner. But Jalal's fourth step advises against this movement since you'd still be sending signals to paralyzed muscles and maybe triggering hallucinations. Viewing your own biology in a more objective way by learning more about the scientific basis of sleep paralysis is also helpful, Jalal said.