Qualtrics Report: Executives are Hesitant to Lead in AI Transformation, Putting Up to $1.3 Trillion at Risk
AI creates estimated $860 billion opportunity in customer experience; market leaders prioritize improving customer experience and could extend their lead with AI
Industries expected to see the biggest gains are business and professional services, consumer retail, and retail banking
QUALTRICS X4, SALT LAKE CITY, March 19, 2025 /PRNewswire/ -- A new report from Qualtrics reveals a majority of senior executives are reluctant to lead their industry in AI adoption - a reality that could see many organizations miss out on their share of a trillion dollar opportunity while early adopters get rewarded with exponential gains.
Findings from the Qualtrics report reveal organizations across a range of industries stand to gain an estimated $860 billion in annual revenue and cost savings - a figure which could rise to $1.3 trillion - by using AI to improve the experiences they deliver to customers. While three-quarters (72%) of executives say AI will significantly change how they approach customer experience over the next three years, few executives are willing to lead the charge. Only 15% of executives aspire to be at the forefront of how AI changes the business landscape.
Organizations investing in customer experience are already gaining market share that could prove significant. Market leaders1 are more than twice as likely to have made improving experiences a greater priority over the past three years compared with their peers. These leaders can further separate themselves by adopting and integrating AI in how they deliver customer experiences today. Organizations that don't risk falling further behind.
'Companies that deliver great experiences build deeper relationships with their customers, and AI is transforming these interactions, going beyond measuring experiences to closing the loop with customers in the moment to make every connection count,' said Qualtrics CEO Zig Serafin. 'Qualtrics AI is already helping organizations respond and deliver personalized, proactive and empathetic experiences that increase loyalty, boost employee engagement, and drive greater business insights and opportunities.'
Using AI to improve customer experience is a multi-billion dollar opportunity for every industry
The $860 billion value from powering customer experience with AI comes from three primary areas. Increased productivity, such as by automating routine tasks, contributes an estimated $420 billion, accelerated topline growth adds $260 billion, and streamlined processes, such as automatically solving customer issues, save organizations $180 billion annually.
At an industry level, the largest gains are in business and professional services ($150 billion), consumer retail and retail banking (both $100 billion), commercial insurance ($70 billion), and small business banking, clinical care, and hotels (all $60 billion).
Beyond business value, executives expect AI to directly enhance customer experiences. They anticipate it will have the greatest impact on improving product quality and delivery (45%), enhancing customer support (44%), personalizing experiences and enabling more empathy in engagements (both 39%).
Effectively implementing AI requires a cross-organizational approach with centralized leadership
Almost half of executives (42%) expect to see a significant measurable impact within two years from using AI to improve experiences. An additional 42% expect to see impact in three to five years.
For executives wanting to accelerate their AI efforts, the key to a successful rollout is having an organization-wide strategy under centralized leadership, rather than running disparate programs. However, while 89% of executives report having at least one AI initiative underway, just 12% of executives have this strategy. Market leaders stand out again in this respect: they are 2.3 times more likely to take this path compared with more stagnant companies.
Key actions to realize the value of AI in customer experience
To overcome this challenge, the report identifies seven key actions organizations must take.
Set AI ambition and value strategy to decide where to invest in AI.
Establish risk and ethics guidelines for responsible and compliant AI use.
Create the technology and data foundation to evolve and grow with AI technology.
Design AI organization and governance team to oversee company-wide implementation.
Launch high-impact priority use cases to build momentum for expanded implementation.
Develop the talent strategy with employee training.
Lead the cultural shift of embracing AI as a core enabler of customer experience.
The full report is available at qualtrics.com, including case studies and a framework for the necessary capabilities to implement AI-enabled customer experience. Download it here.
Qualtrics wishes to thank the organizations whose input and analysis helped inform this report, including McKinsey & Company.
Qualtrics redefines the future of Experience Management with Experience Agents
This week, Qualtrics announced Experience Agents: highly specialized AI agents that autonomously deliver exceptional customer and employee experiences at scale across every channel and interaction. Experience Agents will interact directly with customers and employees to deliver personalized, proactive and empathetic interactions that increase loyalty, boost employee engagement, and drive business insights and opportunities. They scale across every channel and touchpoint, respond in-the-moment to fix or improve experiences, and track market trends to pursue strategic opportunities.
Qualtrics also announced new capabilities in the XM® for Customer Experience suite that allow businesses to bring together structured and unstructured feedback across every channel to create a complete view of their customer experience; get instant access to customer feedback, competitor insights, and industry benchmarks to take quick and targeted action; and equip frontline teams with real-time insights, support, and recommendations to improve experiences in the moment. These new capabilities give organizations the omnichannel insights they need to win in the era of agentic AI.
Methodology
The executive data for this report comes from a global executive study conducted by Qualtrics XM Institute in the fourth quarter of 2024. Using an online survey, XM Institute collected data from 1,501 executives from companies with 1,000 or more employees. The surveyed executives who work at companies headquartered in either Australia, Canada, Germany, the UK, or the US (300/country). Respondents were screened to include positions VP-level and above.
AI opportunity estimates are based on McKinsey research on AI experience to value.
About Qualtrics
Qualtrics is trusted by thousands of the world's best organizations to power exceptional customer and employee experiences that build deep human connections, increase customer loyalty, boost employee engagement, and drive business success. Our advanced AI and specialized Experience Agents allow businesses and governments to proactively interact with customers and employees in personalized ways across every channel and touchpoint, respond in-the-moment to fix or improve experiences, and stay across the latest market trends and opportunities.

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles

Associated Press
25 minutes ago
- Associated Press
KAYTUS Unveils Upgraded MotusAI to Accelerate LLM Deployment
SINGAPORE--(BUSINESS WIRE)--Jun 12, 2025-- KAYTUS, a leading provider of end-to-end AI and liquid cooling solutions, today announced the release of the latest version of its MotusAI AI DevOps Platform at ISC High Performance 2025. The upgraded MotusAI platform delivers significant enhancements in large model inference performance and offers broad compatibility with multiple open-source tools covering the full lifecycle of large models. Engineered for unified and dynamic resource scheduling, it dramatically improves resource utilization and operational efficiency in large-scale AI model development and deployment. This latest release of MotusAI is set to further accelerate AI adoption and fuel business innovation across key sectors such as education, finance, energy, automotive, and manufacturing. This press release features multimedia. View the full release here: MotusAI Dashboard As large AI models become increasingly embedded in real-world applications, enterprises are deploying them at scale, to generate tangible value across a wide range of sectors. Yet, many organizations continue to face critical challenges in AI adoption, including prolonged deployment cycles, stringent stability requirements, fragmented open-source tool management, and low compute resource utilization. To address these pain points, KAYTUS has introduced the latest version of its MotusAI AI DevOps Platform, purpose-built to streamline AI deployment, enhance system stability, and optimize AI infrastructure efficiency for large-scale model operations. Enhanced Inference Performance to Ensure Service Quality Deploying AI inference services is a complex undertaking that involves service deployment, management, and continuous health monitoring. These tasks require stringent standards in model and service governance, performance tuning via acceleration frameworks, and long-term service stability, all of which typically demand substantial investments in manpower, time, and technical expertise. The upgraded MotusAI delivers robust large-model deployment capabilities that bring visibility and performance into perfect alignment. By integrating optimized frameworks such as SGLang and vLLM, MotusAI ensures high-performance, distributed inference services that enterprises can deploy quickly and with confidence. Designed to support large-parameter models, MotusAI leverages intelligent resource and network affinity scheduling to accelerate time-to-launch while maximizing hardware utilization. Its built-in monitoring capabilities span the full stack—from hardware and platforms to pods and services—offering automated fault diagnosis and rapid service recovery. MotusAI also supports dynamic scaling of inference workloads based on real-time usage and resource monitoring, delivering enhanced service stability. Comprehensive Tool Support to Accelerate AI Adoption As AI model technologies evolve rapidly, the supporting ecosystem of development tools continues to grow in complexity. Developers require a streamlined, universal platform to efficiently select, deploy, and operate these tools. The upgraded MotusAI provides extensive support for a wide range of leading open-source tools, enabling enterprise users to configure and manage their model development environments on demand. With built-in tools such as LabelStudio, MotusAI accelerates data annotation and synchronization across diverse categories, improving data processing efficiency and expediting model development cycles. MotusAI also offers an integrated toolchain for the entire AI model lifecycle. This includes LabelStudio and OpenRefine for data annotation and governance, LLaMA-Factory for fine-tuning large models, Dify and Confluence for large model application development, and Stable Diffusion for text-to-image generation. Together, these tools empower users to adopt large models quickly and boost development productivity at scale. Hybrid Training-Inference Scheduling on the Same Node to Maximize Resource Efficiency Efficient utilization of computing resources remains a critical priority for AI startups and small to mid-sized enterprises in the early stages of AI adoption. Traditional AI clusters typically allocate compute nodes separately for training and inference tasks, limiting the flexibility and efficiency of resource scheduling across the two types of workloads. The upgraded MotusAI overcomes traditional limitations by enabling hybrid scheduling of training and inference workloads on a single node, allowing for seamless integration and dynamic orchestration of diverse task types. Equipped with advanced GPU scheduling capabilities, MotusAI supports on-demand resource allocation, empowering users to efficiently manage GPU resources based on workload requirements. MotusAI also features multi-dimensional GPU scheduling, including fine-grained partitioning and support for Multi-Instance GPU (MIG), addressing a wide range of use cases across model development, debugging, and inference. MotusAI's enhanced scheduler significantly outperforms community-based versions, delivering a 5× improvement in task throughput and 5× reduction in latency for large-scale POD deployments. It enables rapid startup and environment readiness for hundreds of PODs while supporting dynamic workload scaling and tidal scheduling for both training and inference. These capabilities empower seamless task orchestration across a wide range of real-world AI scenarios. About KAYTUS KAYTUS is a leading provider of end-to-end AI and liquid cooling solutions, delivering a diverse range of innovative, open, and eco-friendly products for cloud, AI, edge computing, and other emerging applications. With a customer-centric approach, KAYTUS is agile and responsive to user needs through its adaptable business model. Discover more at and follow us on LinkedIn and X. View source version on CONTACT: Media Contacts [email protected] KEYWORD: EUROPE SINGAPORE SOUTHEAST ASIA ASIA PACIFIC INDUSTRY KEYWORD: APPS/APPLICATIONS TECHNOLOGY OTHER TECHNOLOGY SOFTWARE NETWORKS INTERNET HARDWARE DATA MANAGEMENT ARTIFICIAL INTELLIGENCE SOURCE: KAYTUS Copyright Business Wire 2025. PUB: 06/12/2025 07:11 AM/DISC: 06/12/2025 07:10 AM


Business Wire
34 minutes ago
- Business Wire
KAYTUS Unveils Upgraded MotusAI to Accelerate LLM Deployment
SINGAPORE--(BUSINESS WIRE)-- KAYTUS, a leading provider of end-to-end AI and liquid cooling solutions, today announced the release of the latest version of its MotusAI AI DevOps Platform at ISC High Performance 2025. The upgraded MotusAI platform delivers significant enhancements in large model inference performance and offers broad compatibility with multiple open-source tools covering the full lifecycle of large models. Engineered for unified and dynamic resource scheduling, it dramatically improves resource utilization and operational efficiency in large-scale AI model development and deployment. This latest release of MotusAI is set to further accelerate AI adoption and fuel business innovation across key sectors such as education, finance, energy, automotive, and manufacturing. As large AI models become increasingly embedded in real-world applications, enterprises are deploying them at scale, to generate tangible value across a wide range of sectors. Yet, many organizations continue to face critical challenges in AI adoption, including prolonged deployment cycles, stringent stability requirements, fragmented open-source tool management, and low compute resource utilization. To address these pain points, KAYTUS has introduced the latest version of its MotusAI AI DevOps Platform, purpose-built to streamline AI deployment, enhance system stability, and optimize AI infrastructure efficiency for large-scale model operations. Enhanced Inference Performance to Ensure Service Quality Deploying AI inference services is a complex undertaking that involves service deployment, management, and continuous health monitoring. These tasks require stringent standards in model and service governance, performance tuning via acceleration frameworks, and long-term service stability, all of which typically demand substantial investments in manpower, time, and technical expertise. The upgraded MotusAI delivers robust large-model deployment capabilities that bring visibility and performance into perfect alignment. By integrating optimized frameworks such as SGLang and vLLM, MotusAI ensures high-performance, distributed inference services that enterprises can deploy quickly and with confidence. Designed to support large-parameter models, MotusAI leverages intelligent resource and network affinity scheduling to accelerate time-to-launch while maximizing hardware utilization. Its built-in monitoring capabilities span the full stack—from hardware and platforms to pods and services—offering automated fault diagnosis and rapid service recovery. MotusAI also supports dynamic scaling of inference workloads based on real-time usage and resource monitoring, delivering enhanced service stability. Comprehensive Tool Support to Accelerate AI Adoption As AI model technologies evolve rapidly, the supporting ecosystem of development tools continues to grow in complexity. Developers require a streamlined, universal platform to efficiently select, deploy, and operate these tools. The upgraded MotusAI provides extensive support for a wide range of leading open-source tools, enabling enterprise users to configure and manage their model development environments on demand. With built-in tools such as LabelStudio, MotusAI accelerates data annotation and synchronization across diverse categories, improving data processing efficiency and expediting model development cycles. MotusAI also offers an integrated toolchain for the entire AI model lifecycle. This includes LabelStudio and OpenRefine for data annotation and governance, LLaMA-Factory for fine-tuning large models, Dify and Confluence for large model application development, and Stable Diffusion for text-to-image generation. Together, these tools empower users to adopt large models quickly and boost development productivity at scale. Hybrid Training-Inference Scheduling on the Same Node to Maximize Resource Efficiency Efficient utilization of computing resources remains a critical priority for AI startups and small to mid-sized enterprises in the early stages of AI adoption. Traditional AI clusters typically allocate compute nodes separately for training and inference tasks, limiting the flexibility and efficiency of resource scheduling across the two types of workloads. The upgraded MotusAI overcomes traditional limitations by enabling hybrid scheduling of training and inference workloads on a single node, allowing for seamless integration and dynamic orchestration of diverse task types. Equipped with advanced GPU scheduling capabilities, MotusAI supports on-demand resource allocation, empowering users to efficiently manage GPU resources based on workload requirements. MotusAI also features multi-dimensional GPU scheduling, including fine-grained partitioning and support for Multi-Instance GPU (MIG), addressing a wide range of use cases across model development, debugging, and inference. MotusAI's enhanced scheduler significantly outperforms community-based versions, delivering a 5× improvement in task throughput and 5× reduction in latency for large-scale POD deployments. It enables rapid startup and environment readiness for hundreds of PODs while supporting dynamic workload scaling and tidal scheduling for both training and inference. These capabilities empower seamless task orchestration across a wide range of real-world AI scenarios. About KAYTUS KAYTUS is a leading provider of end-to-end AI and liquid cooling solutions, delivering a diverse range of innovative, open, and eco-friendly products for cloud, AI, edge computing, and other emerging applications. With a customer-centric approach, KAYTUS is agile and responsive to user needs through its adaptable business model. Discover more at and follow us on LinkedIn and X.
Yahoo
34 minutes ago
- Yahoo
KAYTUS Unveils Upgraded MotusAI to Accelerate LLM Deployment
Streamlined inference performance, tool compatibility, resource scheduling, and system stability to fast-track large AI model deployment. SINGAPORE, June 12, 2025--(BUSINESS WIRE)--KAYTUS, a leading provider of end-to-end AI and liquid cooling solutions, today announced the release of the latest version of its MotusAI AI DevOps Platform at ISC High Performance 2025. The upgraded MotusAI platform delivers significant enhancements in large model inference performance and offers broad compatibility with multiple open-source tools covering the full lifecycle of large models. Engineered for unified and dynamic resource scheduling, it dramatically improves resource utilization and operational efficiency in large-scale AI model development and deployment. This latest release of MotusAI is set to further accelerate AI adoption and fuel business innovation across key sectors such as education, finance, energy, automotive, and manufacturing. As large AI models become increasingly embedded in real-world applications, enterprises are deploying them at scale, to generate tangible value across a wide range of sectors. Yet, many organizations continue to face critical challenges in AI adoption, including prolonged deployment cycles, stringent stability requirements, fragmented open-source tool management, and low compute resource utilization. To address these pain points, KAYTUS has introduced the latest version of its MotusAI AI DevOps Platform, purpose-built to streamline AI deployment, enhance system stability, and optimize AI infrastructure efficiency for large-scale model operations. Enhanced Inference Performance to Ensure Service Quality Deploying AI inference services is a complex undertaking that involves service deployment, management, and continuous health monitoring. These tasks require stringent standards in model and service governance, performance tuning via acceleration frameworks, and long-term service stability, all of which typically demand substantial investments in manpower, time, and technical expertise. The upgraded MotusAI delivers robust large-model deployment capabilities that bring visibility and performance into perfect alignment. By integrating optimized frameworks such as SGLang and vLLM, MotusAI ensures high-performance, distributed inference services that enterprises can deploy quickly and with confidence. Designed to support large-parameter models, MotusAI leverages intelligent resource and network affinity scheduling to accelerate time-to-launch while maximizing hardware utilization. Its built-in monitoring capabilities span the full stack—from hardware and platforms to pods and services—offering automated fault diagnosis and rapid service recovery. MotusAI also supports dynamic scaling of inference workloads based on real-time usage and resource monitoring, delivering enhanced service stability. Comprehensive Tool Support to Accelerate AI Adoption As AI model technologies evolve rapidly, the supporting ecosystem of development tools continues to grow in complexity. Developers require a streamlined, universal platform to efficiently select, deploy, and operate these tools. The upgraded MotusAI provides extensive support for a wide range of leading open-source tools, enabling enterprise users to configure and manage their model development environments on demand. With built-in tools such as LabelStudio, MotusAI accelerates data annotation and synchronization across diverse categories, improving data processing efficiency and expediting model development cycles. MotusAI also offers an integrated toolchain for the entire AI model lifecycle. This includes LabelStudio and OpenRefine for data annotation and governance, LLaMA-Factory for fine-tuning large models, Dify and Confluence for large model application development, and Stable Diffusion for text-to-image generation. Together, these tools empower users to adopt large models quickly and boost development productivity at scale. Hybrid Training-Inference Scheduling on the Same Node to Maximize Resource Efficiency Efficient utilization of computing resources remains a critical priority for AI startups and small to mid-sized enterprises in the early stages of AI adoption. Traditional AI clusters typically allocate compute nodes separately for training and inference tasks, limiting the flexibility and efficiency of resource scheduling across the two types of workloads. The upgraded MotusAI overcomes traditional limitations by enabling hybrid scheduling of training and inference workloads on a single node, allowing for seamless integration and dynamic orchestration of diverse task types. Equipped with advanced GPU scheduling capabilities, MotusAI supports on-demand resource allocation, empowering users to efficiently manage GPU resources based on workload requirements. MotusAI also features multi-dimensional GPU scheduling, including fine-grained partitioning and support for Multi-Instance GPU (MIG), addressing a wide range of use cases across model development, debugging, and inference. MotusAI's enhanced scheduler significantly outperforms community-based versions, delivering a 5× improvement in task throughput and 5× reduction in latency for large-scale POD deployments. It enables rapid startup and environment readiness for hundreds of PODs while supporting dynamic workload scaling and tidal scheduling for both training and inference. These capabilities empower seamless task orchestration across a wide range of real-world AI scenarios. About KAYTUS KAYTUS is a leading provider of end-to-end AI and liquid cooling solutions, delivering a diverse range of innovative, open, and eco-friendly products for cloud, AI, edge computing, and other emerging applications. With a customer-centric approach, KAYTUS is agile and responsive to user needs through its adaptable business model. Discover more at and follow us on LinkedIn and X. View source version on Contacts Media Contacts media@ Error in retrieving data Sign in to access your portfolio Error in retrieving data Error in retrieving data Error in retrieving data Error in retrieving data