Latest news with #AlexanderGagliano


News18
18 hours ago
- Science
- News18
A Star, 10 Times Bigger Than Sun, Tried To Tango With Black Hole: Here's How The Unique Dance Ended
Last Updated: This is the first time astronomers have seen a supernova triggered directly by a black hole companion. An AI system was crucial in spotting this event early Astronomers have documented what appears to be a new type of supernova, as stellar explosions are known, that occurred when a massive star tried to swallow a black hole with which it had engaged in a lengthy pas de deux, Reuters reported. The star, which was at least 10 times as massive as our sun, and the black hole, which had a similar mass, were gravitationally bound to one another in what is called a binary system. But as the distance separating them gradually narrowed, the black hole's immense gravitational pull appears to have distorted the star – stretching it out from its spherical shape – and siphoned off material before causing it to explode. 'We caught a massive star locked in a fatal tango with a black hole," said astrophysicist Alexander Gagliano of the U.S. National Science Foundation's Institute for AI and Fundamental Interactions located at the Massachusetts Institute of Technology, lead author of the study published this week in the Astrophysical Journal, who was quoted by Reuters. 'After shedding mass for years in a death spiral with the black hole, the massive star met its finale by exploding. It released more energy in a second than the sun has across its entire lifetime," Gagliano added. The explosion occurred about 700 million light-years from Earth. A light-year is the distance light travels in a year, 5.9 trillion miles (9.5 trillion km). How AI spotted the supernova What began like a typical supernova soon deviated. The light from the explosion re brightened after the initial burst, producing a double-peaked light curve—a highly unusual behaviour in supernova observations. An AI system was crucial in spotting this event early. It flagged unusual light patterns months before the star's final explosion, allowing astronomers to follow it through every phase, according to reports and science journals. How much energy did it release? The explosion released more energy in just one second than the Sun will produce over its entire lifetime. The aftermath continued to emit light as the ejected material crashed into surrounding stellar debris. What really must have happened? Stellar Instability Triggered by Distortion: The gravitational stress caused by the black hole may have destabilized the star, causing it to explode, with the black hole then consuming the remnant. Complete Tearing-Apart (Spaghettification): Alternatively, the black hole may have ripped the star apart before any traditional supernova explosion occurred. Either way, the black hole ends up larger. What makes the supernova unique Unseen Mechanism of Stellar Death: This is the first time astronomers have seen a supernova triggered directly by a black hole companion—opening a new chapter in our understanding of how massive stars end their lives. AI in Real-Time Astrophysics: The role of AI in early detection and extensive follow-up reshapes how we explore transient cosmic events. Binary Complexity: Up to now, most models have focused on single-star supernova mechanisms. This finding places binary interactions, especially with black holes, at the forefront of stellar evolution research. With Inputs from Reuters Click here to add News18 as your preferred news source on Google. Get Latest Updates on Movies, Breaking News On India, World, Live Cricket Scores, And Stock Market Updates. Also Download the News18 App to stay updated! First Published: Disclaimer: Comments reflect users' views, not News18's. Please keep discussions respectful and constructive. Abusive, defamatory, or illegal comments will be removed. News18 may disable any comment at its discretion. By posting, you agree to our Terms of Use and Privacy Policy.


Indian Express
5 days ago
- Science
- Indian Express
How AI is changing the way we discover cosmic events
Astronomers have recorded what could be the first known case of a massive star exploding while interacting with a black hole, a finding that could potentially lead to the discovery of an entirely new class of stellar explosions. The star, named SN 2023zkd, was first observed in July 2023, in California by the Zwicky Transient Facility. About 730 million light-years away, in a galaxy with minimal star formation activity, the star was detected using artificial intelligence (AI) designed to instantly identify unusual cosmic phenomena. According to a statement, the early warning allowed telescopes in space and around the world to begin observations immediately, capturing the event in its initial stages. Ashley Villar, an associate professor of astronomy at Harvard University and a co-author of the study, stated, '2023zkd shows some of the clearest signs we've seen of a massive star interacting with a companion before explosion. We think this might be part of a whole class of hidden explosions that AI will help us discover.' Initially, the star appeared to be a typical supernova — a bright flare gradually diminishing over time, signalling the death of a substantial star. However, astronomers observed that it brightened again months later. Historical data revealed that the system's brightness had been steadily increasing for nearly four years, or 1,500 days, prior to the explosion. Such an extended pre-explosion phase is uncommon and indicates the star was under considerable gravitational stress. Experts suggest that the most plausible scenario is that the star was caught in the orbit of a black hole. Evidence from light curves and spectra shows the star experienced two significant eruptions in the years before its end, releasing large amounts of gas. The initial light peak of the explosion was caused by the blast wave, while a slower, prolonged collision with a dense, disc-shaped cloud produced a second peak months later. Over time, the black hole's gravitational pull may have caused the star to collapse. The team also hypothesises that the star might have been consumed by the black hole before it could explode naturally. In that case, the supernova's light would have originated from debris colliding with the surrounding gas. Either way, a more massive black hole would result. SN 2023zkd 'is the strongest evidence to date that such close interactions can detonate a star,' said Alexander Gagliano, lead author of the study and a researcher at the Institute for Artificial Intelligence and Fundamental Interactions. 'We've known for some time that most massive stars are in binaries, but catching one in the act of exchanging mass shortly before it explodes is incredibly rare,' he said. The scientists believe these results demonstrate how AI can identify rare cosmic events in time for detailed scrutiny. They also emphasise the importance of future facilities like the Vera C. Rubin Observatory, which can survey the entire southern sky every few nights from its location in the Chilean Andes, over the next decade. When paired with real-time AI detection, Rubin Observatory's observations will enable astronomers to better understand the lifecycle of massive stars in binary systems by discovering and analysing more of these uncommon and complex phenomena. 'We're now entering an era where we can automatically detect these rare events as they occur, not just afterwards,' Gagliano stated. 'That means we can finally start linking the way stars live with how they die, and that's incredibly exciting,' he added. A report detailing these findings was published in the Astrophysical Journal on Wednesday, 13 August.


Indian Express
5 days ago
- Science
- Indian Express
AI and astronomy: How artificial intelligence is changing the way we discover cosmic events
Astronomers have recorded what could be the first known case of a massive star exploding while interacting with a black hole, a finding that could potentially lead to the discovery of an entirely new class of stellar explosions. This star, named SN 2023zkd, was first observed in July 2023 in California by the Zwicky Transient Facility. About 730 million light-years away, in a galaxy with minimal star formation activity, the star was detected using innovative artificial intelligence (AI) technology designed to instantly identify unusual cosmic phenomena. According to a statement, the early warning allowed telescopes in space and around the world to begin observations immediately, capturing the event in its initial stages. Ashley Villar, an associate professor of astronomy at Harvard University and a co-author of the study, stated, '2023zkd shows some of the clearest signs we've seen of a massive star interacting with a companion before explosion. We think this might be part of a whole class of hidden explosions that AI will help us discover.' Initially, the star appeared to be a typical supernova — a bright flare gradually diminishing over time, signalling the death of a substantial star. However, astronomers observed that it brightened again months later. Historical data revealed that the system's brightness had been steadily increasing for nearly four years, or 1,500 days, prior to the explosion. Such an extended pre-explosion phase is uncommon and indicates the star was under considerable gravitational stress. Experts suggest that the most plausible scenario is that the star was caught in the orbit of a black hole. Evidence from light curves and spectra shows the star experienced two significant eruptions in the years before its end, releasing large amounts of gas. The initial light peak of the explosion was caused by the blast wave, while a slower, prolonged collision with a dense, disc-shaped cloud produced a second peak months later. Over time, the black hole's gravitational pull may have caused the star to collapse. The team also hypothesises that the star might have been consumed by the black hole before it could explode naturally. In that case, the supernova's light would have originated from debris colliding with the surrounding gas. Either way, a more massive black hole would result. SN 2023zkd 'is the strongest evidence to date that such close interactions can detonate a star,' said Alexander Gagliano, lead author of the study and a researcher at the Institute for Artificial Intelligence and Fundamental Interactions. 'We've known for some time that most massive stars are in binaries, but catching one in the act of exchanging mass shortly before it explodes is incredibly rare.' The scientists believe these results demonstrate how AI can identify rare cosmic events in time for detailed scrutiny. They also emphasise the importance of future facilities like the Vera C. Rubin Observatory, which can survey the entire southern sky every few nights from its location in the Chilean Andes, over the next decade. When paired with real-time AI detection, Rubin Observatory's observations will enable astronomers to better understand the lifecycle of massive stars in binary systems by discovering and analysing more of these uncommon and complex phenomena. 'We're now entering an era where we can automatically detect these rare events as they occur, not just afterwards,' Gagliano stated. 'That means we can finally start linking the way stars live with how they die, and that's incredibly exciting,' he added. A report detailing these findings was published in the Astrophysical Journal on Wednesday, 13 August.