logo
#

Latest news with #BogongMoths

Moth uses stars to navigate long distances, scientists discover
Moth uses stars to navigate long distances, scientists discover

Yahoo

time5 hours ago

  • Science
  • Yahoo

Moth uses stars to navigate long distances, scientists discover

A species of Australian moth travels up to a thousand kilometres every summer using the stars to navigate, scientists said Wednesday, the first time this talent has been discovered in an invertebrate covering vast distances. When temperatures start rising every year, Bogong moths embark on the long night-time flight from their home on the country's eastern coast to the cool inland shelter of caves in the Australian Alps. It has recently been discovered that they can use Earth's magnetic field like a compass to stay on track during their trip of up to 1,000 kilometres (620 miles). Now, a study published in the journal Nature has found that the moths can also use the light from the stars and the Milky Way to find their way through the dark. "This is the first invertebrate that's known to be able to use the stars for that purpose," study co-author Eric Warrant of Sweden's Lund University told AFP. The only other invertebrate known to use stars for orientation are dung beetles -- but that is over very short distances, Warrant said. Out of all the animal kingdom, only some birds, possibly seals and of course humans can use starlight to navigate long distance. Bogong moths, which are around three centimetres long and are named after the Indigenous Australian word for brown, now join that list. - 'Flight simulator' - To study this phenomenon, the international team of researchers put some Bogong moths in a small enclosure and projected different maps of the night sky onto its ceiling. The moth was tethered to a rod connected to the top of the enclosure, which precisely recorded which directions it tried to fly in. This "flight simulator" first confirmed that Bogong moths can in fact navigate using their internal magnetic compass, lead study author David Dreyer, also of Lund University, told AFP. Then the researchers removed the effect of Earth's magnetic field in the enclosure. "To our surprise," the moths were still able to find the right direction, Dreyer said. When they rotated the sky 180 degrees, the moths changed their flight to follow along. And when the researchers projected weird, incorrect maps of the night sky, the moths became erratic and lost. This reinforced that the insects can not only navigate by the sky, but can follow along during the night when the relative positions of the stars shift along with Earth's rotation. - Mysteries abound - No one knows exactly how the Bogong moth manages this feat. One theory is that they sometimes "cross-check" their direction with their magnetic compass, Dreyer said. Another question is exactly which stars the moths are using to navigate. In the lab, the researchers monitored 30 neurons involved in the moth's vision, coordination and navigation. Developing the system of non-magnetic electrodes "cost me a fortune but it was worth the investment," Warrant said. The neurons became particularly active at the sight of the long, bright stripe of the Milky Way, as well as the Carina Nebula. The Milky Way is brighter in the Southern Hemisphere than in the north, Warrant pointed out. "The intensity of that stripe grows as you go from the northern part of the sky to the southern part," which could offer a clue as to how the moths use it to navigate south, Warrant said. Another mystery is how the moths know when to head south when summer arrives. Warrant, who is supervising further research on this subject, said one option is that this knowledge was simply "something that the parents hand to their children". The researchers believe that near the end of the moth's long migration, they start noticing clues they are getting close to their mountain refuge. Warrant said he has identified a specific "odour compound" which emanates from the caves. This smell "seems to act as a navigational beacon right at the very end of the journey," he added. After the moths have seen out the sweltering summer, they return to their coastal birthplace to reproduce before dying. pcl-dl/jj

Moth uses stars to navigate long distances, scientists discover
Moth uses stars to navigate long distances, scientists discover

Yahoo

time18 hours ago

  • Science
  • Yahoo

Moth uses stars to navigate long distances, scientists discover

A species of Australian moth travels up to a thousand kilometres every summer using the stars to navigate, scientists said Wednesday, the first time this talent has been discovered in an invertebrate covering vast distances. When temperatures start rising every year, Bogong moths embark on the long night-time flight from their home on the country's eastern coast to the cool inland shelter of caves in the Australian Alps. It has recently been discovered that they can use Earth's magnetic field like a compass to stay on track during their trip of up to 1,000 kilometres (620 miles). Now, a study published in the journal Nature has found that the moths can also use the light from the stars and the Milky Way to find their way through the dark. "This is the first invertebrate that's known to be able to use the stars for that purpose," study co-author Eric Warrant of Sweden's Lund University told AFP. The only other invertebrate known to use stars for orientation are dung beetles -- but that is over very short distances, Warrant said. Out of all the animal kingdom, only some birds, possibly seals and of course humans can use starlight to navigate long distance. Bogong moths, which are around three centimetres long and are named after the Indigenous Australian word for brown, now join that list. - 'Flight simulator' - To study this phenomenon, the international team of researchers put some Bogong moths in a small enclosure and projected different maps of the night sky onto its ceiling. The moth was tethered to a rod connected to the top of the enclosure, which precisely recorded which directions it tried to fly in. This "flight simulator" first confirmed that Bogong moths can in fact navigate using their internal magnetic compass, lead study author David Dreyer, also of Lund University, told AFP. Then the researchers removed the effect of Earth's magnetic field in the enclosure. "To our surprise," the moths were still able to find the right direction, Dreyer said. When they rotated the sky 180 degrees, the moths changed their flight to follow along. And when the researchers projected weird, incorrect maps of the night sky, the moths became erratic and lost. This reinforced that the insects can not only navigate by the sky, but can follow along during the night when the relative positions of the stars shift along with Earth's rotation. - Mysteries abound - No one knows exactly how the Bogong moth manages this feat. One theory is that they sometimes "cross-check" their direction with their magnetic compass, Dreyer said. Another question is exactly which stars the moths are using to navigate. In the lab, the researchers monitored 30 neurons involved in the moth's vision, coordination and navigation. Developing the system of non-magnetic electrodes "cost me a fortune but it was worth the investment," Warrant said. The neurons became particularly active at the sight of the long, bright stripe of the Milky Way, as well as the Carina Nebula. The Milky Way is brighter in the Southern Hemisphere than in the north, Warrant pointed out. "The intensity of that stripe grows as you go from the northern part of the sky to the southern part," which could offer a clue as to how the moths use it to navigate south, Warrant said. Another mystery is how the moths know when to head south when summer arrives. Warrant, who is supervising further research on this subject, said one option is that this knowledge was simply "something that the parents hand to their children". The researchers believe that near the end of the moth's long migration, they start noticing clues they are getting close to their mountain refuge. Warrant said he has identified a specific "odour compound" which emanates from the caves. This smell "seems to act as a navigational beacon right at the very end of the journey," he added. After the moths have seen out the sweltering summer, they return to their coastal birthplace to reproduce before dying. pcl-dl/jj

This Australian moth uses the stars as a compass to travel hundreds of miles
This Australian moth uses the stars as a compass to travel hundreds of miles

Yahoo

time19 hours ago

  • Science
  • Yahoo

This Australian moth uses the stars as a compass to travel hundreds of miles

NEW YORK (AP) — An Australian moth follows the stars during its yearly migration, using the night sky as a guiding compass, according to a new study. When temperatures heat up, nocturnal Bogong moths fly about 620 miles (1,000 kilometers) to cool down in caves by the Australian Alps. They later return home to breed and die. Birds routinely navigate by starlight, but the moths are the first known invertebrates, or creatures without a backbone, to find their way across such long distances using the stars. Scientists have long wondered how the moths travel to a place they've never been. A previous study hinted that Earth's magnetic field might help steer them in the right direction, along with some kind of visual landmark as a guide. Since stars appear in predictable patterns each night, scientists suspected they might help lead the way. They placed moths in a flight simulator that mimicked the night sky above them and blocked out the Earth's magnetic field, noting where they flew. Then they scrambled the stars and saw how the moths reacted. When the stars were as they should be, the moths flapped in the right direction. But when the stars were in random places, the moths were disoriented. Their brain cells also got excited in response to specific orientations of the night sky. The findings were published Wednesday in the journal Nature. It 'was a very clean, impressive demonstration that the moths really are using a view of the night sky to guide their movements,' said Kenneth Lohmann, who studies animal navigation at the University of North Carolina at Chapel Hill and was not involved with the new research. Researchers don't know what features of the night sky the moths use to find their way. It could be a stripe of light from the Milky Way, a colorful nebula or something else entirely. Whatever it is, the insects seem to rely on that along with Earth's magnetic field to make their journey. Other animals harness the stars as a guide. Birds take celestial cues as they soar through the skies and dung beetles roll their remains short distances while using the Milky Way to stay on course. It's an impressive feat for Bogong moths whose brains are smaller than size of a grain of rice to rely on the night sky for their odyssey, said study author David Dreyer with Lund University in Sweden. 'It's remarkable that an animal with such a tiny brain can actually do this,' Dreyer said. ___ The Associated Press Health and Science Department receives support from the Howard Hughes Medical Institute's Science and Educational Media Group and the Robert Wood Johnson Foundation. The AP is solely responsible for all content.

This Australian moth uses the stars as a compass to travel hundreds of miles
This Australian moth uses the stars as a compass to travel hundreds of miles

The Independent

time19 hours ago

  • Science
  • The Independent

This Australian moth uses the stars as a compass to travel hundreds of miles

An Australian moth follows the stars during its yearly migration, using the night sky as a guiding compass, according to a new study. When temperatures heat up, nocturnal Bogong moths fly about 620 miles (1,000 kilometers) to cool down in caves by the Australian Alps. They later return home to breed and die. Birds routinely navigate by starlight, but the moths are the first known invertebrates, or creatures without a backbone, to find their way across such long distances using the stars. Scientists have long wondered how the moths travel to a place they've never been. A previous study hinted that Earth's magnetic field might help steer them in the right direction, along with some kind of visual landmark as a guide. Since stars appear in predictable patterns each night, scientists suspected they might help lead the way. They placed moths in a flight simulator that mimicked the night sky above them and blocked out the Earth's magnetic field, noting where they flew. Then they scrambled the stars and saw how the moths reacted. When the stars were as they should be, the moths flapped in the right direction. But when the stars were in random places, the moths were disoriented. Their brain cells also got excited in response to specific orientations of the night sky. The findings were published Wednesday in the journal Nature. It 'was a very clean, impressive demonstration that the moths really are using a view of the night sky to guide their movements,' said Kenneth Lohmann, who studies animal navigation at the University of North Carolina at Chapel Hill and was not involved with the new research. Researchers don't know what features of the night sky the moths use to find their way. It could be a stripe of light from the Milky Way, a colorful nebula or something else entirely. Whatever it is, the insects seem to rely on that along with Earth's magnetic field to make their journey. Other animals harness the stars as a guide. Birds take celestial cues as they soar through the skies and dung beetles roll their remains short distances while using the Milky Way to stay on course. It's an impressive feat for Bogong moths whose brains are smaller than size of a grain of rice to rely on the night sky for their odyssey, said study author David Dreyer with Lund University in Sweden. 'It's remarkable that an animal with such a tiny brain can actually do this,' Dreyer said. ___ The Associated Press Health and Science Department receives support from the Howard Hughes Medical Institute's Science and Educational Media Group and the Robert Wood Johnson Foundation. The AP is solely responsible for all content.

Bogong Moths Are First Bugs Known to Use Stars for Long-Distance Travel
Bogong Moths Are First Bugs Known to Use Stars for Long-Distance Travel

Gizmodo

time19 hours ago

  • Science
  • Gizmodo

Bogong Moths Are First Bugs Known to Use Stars for Long-Distance Travel

Every spring in the Southern Hemisphere, Bogong moths migrate up to 621 miles (1,000 kilometers) from southeast Australia to spend the summer in cool caves in the Australian Alps. At the beginning of the fall, they fly back to their breeding grounds and die. Each moth undertakes the two-way journey only once in its life—so how does it know where it's going? A team led by David Dreyer, a visiting research fellow in sensory biology at Lund University, suggests that Bogong moths may use the starry sky—among other tools—to navigate in the right direction. If this proves to be true, Dreyer and his colleagues claim it would make the Australian Bogong moth the first known invertebrate to 'use the stars for discerning specific geographical directions (that is, a direction relative to north) for directed long-range navigation to a distant goal,' the team wrote in a new study, published today in the journal Nature. In 2018, the same researchers suggested that Bogong moths reach their destinations by both sensing Earth's magnetic field and by using unknown visual landmarks. In fact, as noted by a Nature News and Views article, some animals rely on several different navigational methods. To test whether the night sky plays a role in guiding the moths, the team captured the insects at the start of their migration and placed them in a planetarium-like simulator. 'By tethering spring and autumn migratory moths in a flight simulator, we found that, under naturalistic moonless night skies and in a nulled geomagnetic field (disabling the moth's known magnetic sense), moths flew in their seasonally appropriate migratory directions,' the researchers explained in the study. As ancient seafarers would attest, the predictable positions of stars make them a reliable navigational tool. Nonetheless, scientists have previously documented only some night-migratory birds using starlight to find a specific geographical direction. Dung Beetles use the stars to travel in a straight line, but they are not migratory insects—they're not using stellar cues for long-distance travel like birds and Bogong moths do. By analyzing the moth's brain, the scientists also demonstrated that neurons linked to vision 'responded specifically to rotations of the night sky and were tuned to a common sky orientation,' showing the greatest activity 'when the moth was headed southwards.' In other words, their brains appear to be wired to pick up on stellar cues. However, the parts of the starry sky that moths specifically rely on for directions remain a mystery, especially since it is unclear whether moths can even see individual stars. The researchers theorize that the moths can likely see the Milky Way, while constellations, the Moon, and potentially dark features on the horizon might also serve as reliable navigational cues. Ultimately, the study builds on the team's previous research by further illuminating the Bogong moth's directional toolkit. 'Our results suggest that Bogong moths use stellar cues and the Earth's magnetic field to create a robust compass system for long-distance nocturnal navigation towards a specific destination,' the researchers concluded. The next time intense solar activity causes GPS blackouts, I bet we'll all be wishing we were Bogong moths.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store