Latest news with #ChristinaBack

Miami Herald
13 hours ago
- Business
- Miami Herald
General Atomics Achieves Another Milestone in Silicon Carbide Composite Nuclear Fuel Rod Technology
SAN DIEGO, CALIFORNIA / ACCESS Newswire / June 24, 2025 / General Atomics Electromagnetic Systems (GA-EMS) announced today that it has reached another significant milestone in the development and testing of its SiGA® Silicon Carbide (SiC) nuclear fuel cladding technology. Recent performance testing on GA-EMS' patented, localized SiC joining method has shown excellent performance under the corrosive water conditions expected in the current fleet of pressurized water nuclear reactors, marking a significant step in advancing the readiness of SiGA cladding for reactor testing. SiGA is an engineered, multilayer composite cladding structure that offers high temperature performance and other operational benefits for current and future nuclear reactors. "Our patented local joining process seals the fuel rods without exposing the nuclear fuel pellets to high temperature water," said Scott Forney, president of GA-EMS. "Our SiC cladding and localized joining method form a complete solution to fully and safely contain the solid fuel and enable it to withstand temperatures six times greater than the expected light-water, pressurized water reactor conditions. The local SiC joining process is also proving to reduce processing time, supporting the scale-up of efficient domestic manufacturing capability to provide safe accident tolerant fuel cladding for the nuclear fleet." Fuel cladding is a barrier between the reactor coolant and nuclear fuel pellets and is essential to protecting the fuel while also ensuring the safety of a nuclear power plant. Fuel is stacked into cladding tubes and the ends of the tubes are joined to form hermetic seals for the fuel rods. GA-EMS' SiGA cladding offers superior high temperature and irradiation resistance which can significantly improve the operating performance, economic efficiency, and safety of light water reactors. "We've successfully verified irradiation resistance of our ceramic joints at the Oak Ridge National Laboratory High Flux Isotope Reactor test reactor," said Dr. Christina Back, vice president of GA-EMS Nuclear Technologies and Materials. "Now, GA-EMS is working to evaluate the quality of the SiGA joints under the high temperature, high pressure, and corrosive water coolant environment expected in pressurized water reactors. We achieved a critical milestone this past month, with results confirming that joints fabricated by our local SiC joining process remained gas-tight after 180-days of exposure in Westinghouse's reactor coolant test facility. It is very exciting to be moving to the ultimate demonstration of joint performance testing in the Advanced Test Reactor at Idaho National Laboratory in the presence of both corrosive water coolant and neutron irradiation." Acknowledgment: Based upon work supported by the US Department of Energy under Award No. DE-NE0009235 "SiC Cladding Development." Contact InformationGeneral Atomics Electromagnetic Systems Media Relations ems-mediarelations@ SOURCE: General Atomics Electromagnetic Systems press release
Yahoo
09-02-2025
- Science
- Yahoo
NASA and General Atomics test nuclear fuel for future moon and Mars missions
When you buy through links on our articles, Future and its syndication partners may earn a commission. The first humans to Mars might someday ride a rocket propelled by a nuclear reactor to their destination. But before that can happen, nuclear thermal propulsion (NTP) technologies still have quite a way to go before we could blast astronauts through space on a nuclear rocket. However, earlier this month, General Atomics Electromagnetic Systems (GA-EMS), in collaboration with NASA, achieved an important milestone on the road to using NTP rockets. At NASA's Marshall Space Flight Center in Alabama, General Atomics tested a new NTP reactor fuel to find out if the fuel could function in the extreme conditions of space. According to company leadership, the tests showed that the fuel can withstand the harsh conditions of spaceflight. "We're very encouraged by the positive test results proving the fuel can survive these operational conditions, moving us closer to realizing the potential of safe, reliable nuclear thermal propulsion for cislunar and deep space missions," General Atomics president Scott Forney said in a statement. To test the fuel, General Atomics took the samples and subjected them to six thermal cycles that used hot hydrogen to rapidly increase the temperature to 2600 degrees Kelvin or 4,220 degrees Fahrenheit. Any nuclear thermal propulsion fuel aboard a spacecraft would have to be able to survive extreme temperatures and exposure to hot hydrogen gas. To test how the fuel could with stand these conditions, General Atomics conducted additional tests with varying protective features to get further data on how different material enhancements improved the performance of the fuel under conditions similar to that of a nuclear reactor. According to the company, these types of tests were a first. "To the best of our knowledge, we are the first company to use the compact fuel element environmental test (CFEET) facility at NASA MSFC to successfully test and demonstrate the survivability of fuel after thermal cycling in hydrogen representative temperatures and ramp rates," Christina Back, vice president of General Atomics Nuclear Technologies and Materials, said in the same statement. NASA and General Atomics tested the fuel by exposing it to temperatures up to 3,000 Kelvin (4,940 Fahrenheit or 2,727 Celsius), finding that it performed well even at temperatures that high. According to Back, this means a NTP system using the fuel could operate two-to-three times more efficiently than current rocket engines. One of the main reasons why NASA wants to build NTP rockets is that they could be much faster than the rockets we use today, which are propelled by traditional chemical fuel. RELATED STORIES: — US military wants to demonstrate new nuclear power systems in space by 2027 — NASA, DARPA to launch nuclear rocket to orbit by early 2026 — Europe wants to build a nuclear rocket for deep space exploration A faster transit time could reduce risks for astronauts, as longer trips require more supplies and more robust systems to support the astronauts while they travel to their destination. There is also the issue of radiation; the longer astronauts are in space, the more cosmic radiation they are subjected to. Shorter flight times could reduce these risks, making the possibility of deep space human spaceflight closer to reality. In 2023, NASA and Defense Advanced Research Projects Agency (DARPA) announced they're working on a nuclear thermal rocket engine, so that NASA can send a crewed spacecraft to Mars. The agency hopes to launch a demonstration as early as 2027.