logo
#

Latest news with #EarthPlanetaryScienceLetters

Scientists solve mystery of Antarctic mountain range hidden for 500 million years
Scientists solve mystery of Antarctic mountain range hidden for 500 million years

The Independent

time29-05-2025

  • General
  • The Independent

Scientists solve mystery of Antarctic mountain range hidden for 500 million years

Have you ever imagined what Antarctica looks like beneath its thick blanket of ice? Hidden below are rugged mountains, valleys, hills and plains. Some peaks, like the towering Transantarctic Mountains, rise above the ice. But others, like the mysterious and ancient Gamburtsev Subglacial Mountains in the middle of East Antarctica, are completely buried. The Gamburtsev Mountains are similar in scale and shape to the European Alps. But we can't see them because the high alpine peaks and deep glacial valleys are entombed beneath kilometres of ice. How did they come to be? Typically, a mountain range will rise in places where two tectonic plates clash with each other. But East Antarctica has been tectonically stable for millions of years. Our new study, published in Earth and Planetary Science Letters, reveals how this hidden mountain chain emerged more than 500 million years ago when the supercontinent Gondwana formed from colliding tectonic plates. Our findings offer fresh insight into how mountains and continents evolve over geological time. They also help explain why Antarctica's interior has remained remarkably stable for hundreds of millions of years. A buried secret The Gamburtsev Mountains are buried beneath the highest point of the East Antarctic ice sheet. They were first discovered by a Soviet expedition using seismic techniques in 1958. Because the mountain range is completely covered in ice, it's one of the least understood tectonic features on Earth. For scientists, it's deeply puzzling. How could such a massive mountain range form and still be preserved in the heart of an ancient, stable continent? Most major mountain chains mark the sites of tectonic collisions. For example, the Himalayas are still rising today as the Indian and Eurasian plates continue to converge, a process that began about 50 million years ago. Plate tectonic models suggest the crust now forming East Antarctica came from at least two large continents more than 700 million years ago. These continents used to be separated by a vast ocean basin. The collision of these landmasses was key to the birth of Gondwana, a supercontinent that included what is now Africa, South America, Australia, India and Antarctica. Our new study supports the idea that the Gamburtsev Mountains first formed during this ancient collision. The colossal clash of continents triggered the flow of hot, partly molten rock deep beneath the mountains. As the crust thickened and heated during mountain building, it eventually became unstable and began to collapse under its own weight. Deep beneath the surface, hot rocks began to flow sideways, like toothpaste squeezed from a tube, in a process known as gravitational spreading. This caused the mountains to partially collapse, while still preserving a thick crustal 'root', which extends into Earth's mantle beneath. Crystal time capsules To piece together the timing of this dramatic rise and fall, we analysed tiny zircon grains found in sandstones deposited by rivers flowing from the ancient mountains more than 250 million years ago. These sandstones were recovered from the Prince Charles Mountains, which poke out of the ice hundreds of kilometres away. Zircons are often called 'time capsules' because they contain minuscule amounts of uranium in their crystal structure, which decays at a known rate and allows scientists to determine their age with great precision. These zircon grains preserve a record of the mountain-building timeline: the Gamburtsev Mountains began to rise around 650 million years ago, reached Himalayan heights by 580 million years ago, and experienced deep crustal melting and flow that ended around 500 million years ago. Most mountain ranges formed by continental collisions are eventually worn down by erosion or reshaped by later tectonic events. Because they've been preserved by a deep layer of ice, the Gamburtsev Subglacial Mountains are one of the best-preserved ancient mountain belts on Earth. While it's currently very challenging and expensive to drill through the thick ice to sample the mountains directly, our model offers new predictions to guide future exploration. For instance, recent fieldwork near the Denman Glacier on East Antarctica's coast uncovered rocks that may be related to these ancient mountains. Further analysis of these rock samples will help reconstruct the hidden architecture of East Antarctica. Antarctica remains a continent full of geological surprises, and the secrets buried beneath its ice are only beginning to be revealed. Jacqueline Halpin is an Associate Professor of Geology at the University of Tasmania. Nathan R. Daczko is a Professor of Earth Science at Macquarie University.

Breakthrough after mysterious mountain range found buried beneath Antarctica's ice
Breakthrough after mysterious mountain range found buried beneath Antarctica's ice

The Independent

time28-05-2025

  • General
  • The Independent

Breakthrough after mysterious mountain range found buried beneath Antarctica's ice

Have you ever imagined what Antarctica looks like beneath its thick blanket of ice? Hidden below are rugged mountains, valleys, hills and plains. Some peaks, like the towering Transantarctic Mountains, rise above the ice. But others, like the mysterious and ancient Gamburtsev Subglacial Mountains in the middle of East Antarctica, are completely buried. The Gamburtsev Mountains are similar in scale and shape to the European Alps. But we can't see them because the high alpine peaks and deep glacial valleys are entombed beneath kilometres of ice. How did they come to be? Typically, a mountain range will rise in places where two tectonic plates clash with each other. But East Antarctica has been tectonically stable for millions of years. Our new study, published in Earth and Planetary Science Letters, reveals how this hidden mountain chain emerged more than 500 million years ago when the supercontinent Gondwana formed from colliding tectonic plates. Our findings offer fresh insight into how mountains and continents evolve over geological time. They also help explain why Antarctica's interior has remained remarkably stable for hundreds of millions of years. A buried secret The Gamburtsev Mountains are buried beneath the highest point of the East Antarctic ice sheet. They were first discovered by a Soviet expedition using seismic techniques in 1958. Because the mountain range is completely covered in ice, it's one of the least understood tectonic features on Earth. For scientists, it's deeply puzzling. How could such a massive mountain range form and still be preserved in the heart of an ancient, stable continent? Most major mountain chains mark the sites of tectonic collisions. For example, the Himalayas are still rising today as the Indian and Eurasian plates continue to converge, a process that began about 50 million years ago. Plate tectonic models suggest the crust now forming East Antarctica came from at least two large continents more than 700 million years ago. These continents used to be separated by a vast ocean basin. The collision of these landmasses was key to the birth of Gondwana, a supercontinent that included what is now Africa, South America, Australia, India and Antarctica. Our new study supports the idea that the Gamburtsev Mountains first formed during this ancient collision. The colossal clash of continents triggered the flow of hot, partly molten rock deep beneath the mountains. As the crust thickened and heated during mountain building, it eventually became unstable and began to collapse under its own weight. Deep beneath the surface, hot rocks began to flow sideways, like toothpaste squeezed from a tube, in a process known as gravitational spreading. This caused the mountains to partially collapse, while still preserving a thick crustal 'root', which extends into Earth's mantle beneath. Crystal time capsules To piece together the timing of this dramatic rise and fall, we analysed tiny zircon grains found in sandstones deposited by rivers flowing from the ancient mountains more than 250 million years ago. These sandstones were recovered from the Prince Charles Mountains, which poke out of the ice hundreds of kilometres away. Zircons are often called 'time capsules' because they contain minuscule amounts of uranium in their crystal structure, which decays at a known rate and allows scientists to determine their age with great precision. These zircon grains preserve a record of the mountain-building timeline: the Gamburtsev Mountains began to rise around 650 million years ago, reached Himalayan heights by 580 million years ago, and experienced deep crustal melting and flow that ended around 500 million years ago. Most mountain ranges formed by continental collisions are eventually worn down by erosion or reshaped by later tectonic events. Because they've been preserved by a deep layer of ice, the Gamburtsev Subglacial Mountains are one of the best-preserved ancient mountain belts on Earth. While it's currently very challenging and expensive to drill through the thick ice to sample the mountains directly, our model offers new predictions to guide future exploration. For instance, recent fieldwork near the Denman Glacier on East Antarctica's coast uncovered rocks that may be related to these ancient mountains. Further analysis of these rock samples will help reconstruct the hidden architecture of East Antarctica. Antarctica remains a continent full of geological surprises, and the secrets buried beneath its ice are only beginning to be revealed. Jacqueline Halpin is an Associate Professor of Geology at the University of Tasmania. Nathan R. Daczko is a Professor of Earth Science at Macquarie University.

Fossil teeth analysis upends what's known about megalodon's diet, scientists say
Fossil teeth analysis upends what's known about megalodon's diet, scientists say

CNN

time27-05-2025

  • General
  • CNN

Fossil teeth analysis upends what's known about megalodon's diet, scientists say

What scientists understand about the voracious feeding habits of the colossal megalodon could be up for some revision. The prehistoric predator that went extinct about 3.6 million years ago was not hunting only large marine mammals such as whales as researchers widely thought, a new study has found. Instead, minerals in fossilized teeth reveal that megalodon might have been an opportunistic feeder to meet its remarkable 100,000-calorie-per-day requirement. 'When available, it would probably have fed on large prey items, but when not available, it was flexible enough to feed also on smaller animals to fulfill its dietary requirements,' said lead study author Jeremy McCormack, a geoscientist at Goethe University in Frankfurt, Germany. The study, published Monday in the journal Earth and Planetary Science Letters, also showed there were regional differences in the giant shark's feeding habits. The finding suggests megalodon would pursue whatever was in local waters, devouring other top predators and smaller prey alike. 'They were not concentrating on certain prey types, but they must have fed throughout the food web, on many different species,' McCormack said. While certainly this was a fierce apex predator, and no one else would probably prey on an adult megalodon, it's clear that they themselves could potentially feed on almost everything else that swam around.' Megalodon dispatched its prey with a ferocious bite and lethal, serrated teeth that could reach up to 7 inches (18 centimeters) long — the size of a human hand. The superpredator's teeth — abundant in the fossil record — are what McCormack and his colleagues used to conduct a geochemical analysis, unlocking fresh clues that could challenge megalodon's role as sole king of the ancient seas. It's not the first time that a study has challenged previous knowledge about the enormous sea creature. In fact, many questions remain unanswered about Otodus megalodon — its scientific species name meaning 'giant tooth' — since no complete fossil has ever been discovered. The lack of hard evidence stems from the fact that fish skeletons are made of softer cartilage rather than bone, so they don't fossilize very well. Recent research found that the animal was more warm-blooded than other sharks, for example, and there is an ongoing debate about its size and shape. Scientists who created a 3D reconstruction suggested in 2022 that megalodon was about three times as long as a great white shark — about 52 feet (16 meters). However, a March study hypothesized that the megashark was actually much larger — up to 80 feet (24 meters) in length and even longer than the fictional version in the 2018 blockbuster 'The Meg,' which suggested the ancient predator was 75 feet (23 meters) from head to tail. As for megalodon's feeding habits, determining what it ate based on fossil evidence poses challenges, according to McCormack. 'We know that they fed on large marine mammals from tooth bite marks,' he said. 'Of course, you can see bite marks on the bones of marine mammals, but you will not see them if they fed on other sharks, because sharks don't have bones. So there's already a bias in this kind of fossil record.' To glean more about megalodon's prey selection, McCormack and his coauthors looked at the giant shark's fossilized teeth and compared them with those of other animals that lived at the same time, as well as teeth from modern sharks and other predators such as dolphins. The researchers used specimens from museum collections and samples from beached animal carcasses. Specifically, the study team conducted a lab analysis of zinc, a mineral that is acquired only through food. Zinc is essential for living organisms and plays a crucial role in tooth development. The ratio of heavy and light zinc isotopes in the sharks' tooth enamel preserves a record of the kind of animal matter that they ate. Different types, or isotopes, of zinc are absorbed when fish and other animals eat, but one of them — zinc-66 — is stored in tooth enamel much less than another, zinc-64. The ratio between those zinc isotopes widens the further away an animal gets from the lowest level of the food chain. That means that a fish eating other fish would have lower levels of zinc-66 compared with zinc-64, and the fish that eat those fish will have even less zinc-66 compared with zinc-64, creating ratio markers that can help draw up a sequence of the food chain. The researchers found that sea bream, a fish that feeds on mussels and crustaceans, was at the bottom of their reconstructed chain, followed by smaller sharks from the Carcharhinus genus, up to 9.8 feet (3 meters) in length, and extinct toothed whales comparable in size to modern dolphins. Farther up were larger sharks such as the Galeocerdo aduncus, similar to a modern tiger shark, and occupying the top slot was megalodon — but its zinc ratios were not so different as to suggest a massive gap with the lower-tier animals, meaning they might have been part of megalodon's diet, too. 'Based on our new results, we see that it was clear it could feed at the very top, but it was flexible enough to feed also on lower (levels of the food chain),' McCormack said. In addition, the researchers found megalodon was not alone at the top of the food chain but instead shared the spot with other 'opportunistic supercarnivores' such as its close relative Otodus chubutensis and the lesser-known Araloselachus cuspidatus, another giant fish-eating shark. That revelation challenges the assumption that megalodon was the exclusive ruler of the oceans and draws comparisons with the great white shark, another large opportunistic feeder. The finding also reinforces the idea that the rise of the great white may have been a factor in megalodon's extinction, according to paleobiologist Kenshu Shimada, one of the coauthors of the latest study. 'One of the contributing factors for the demise of megalodon has been hypothesized to be the rise of the great white shark, which feeds on fish when young and shifts its diet to marine mammals as it becomes larger,' said Shimada, a professor of biological and environmental sciences at DePaul University in Chicago. 'Our new study, that demonstrates the 'diet overlap' between the great white shark and megalodon, strengthens the idea that the evolution of the smaller, likely more agile and maneuverable great white shark could have indeed (driven) megalodon to extinction.' The new research allows scientists to recreate a snapshot of the marine food web that existed about 20 million years ago, according to Jack Cooper, a UK-based paleobiologist and megalodon expert who wasn't involved with the study. 'The general picture of megalodon has been of a gigantic shark munching on whales,' Cooper said in an email. 'This study adds a new dimension that megalodon probably had a wide range of prey — essentially, it probably ate not just whales but whatever it wanted.' Another interesting find, he added, is that megalodon's diet probably varied slightly between different populations, something observed in today's great white sharks. 'This makes sense and is something we would have probably expected since megalodon lived all over the world and not all of its prey items would have done; but it's wonderful to have concrete data supporting this hypothesis,' Cooper said. The study adds to a growing body of evidence that is reshaping commonly held beliefs about megalodon and its close relatives, said Alberto Collareta, a researcher in the department of Earth sciences at Italy's University of Pisa who was not involved in the research. 'These have led us to abandon traditional reconstruction of the megatooth sharks as 'inflated' versions of the modern white shark. We now know that the Megalodon was something else — in terms of size, shape and ancestry, and of biology, too,' Collareta said via email. 'The Miocene (palaeo)ecosystems in question did not work in a radically different way compared to their modern counterparts — even if they feature … completely extinct protagonists such as the megatooth sharks,' he added, highlighting what he found to be the report's key takeaway. 'That said, it is still useful to acknowledge that our understanding of the Meg is essentially limited to its ubiquitous teeth, a few vertebrae and a handful of scales. What I'd really love to see emerging from 'the foggy ruins of time' is a complete Meg skeleton… Let's hope that the fossil record will amaze us once again.'

Impact of solar storm from 12350BC could be much worse than what we knew
Impact of solar storm from 12350BC could be much worse than what we knew

The Independent

time16-05-2025

  • Science
  • The Independent

Impact of solar storm from 12350BC could be much worse than what we knew

The most powerful solar particle storm known to date struck Earth in 12350 BC, according to a new study that sets a 'new worst case scenario' for humanity from such colossal space weather events. The latest findings, published in the journal Earth and Planetary Science Letters, confirm that the extreme event from 14,300 years ago is nearly 20 per cent stronger than the notorious 775 AD solar storm, known until now as the strongest. "Compared to the largest event of the modern satellite era – the 2005 particle storm – the ancient 12350 BC event was over 500 times more intense," said astronomer and study author Kseniia Golubenko from the University of Oulu in Finland. Solar particle storms are emissions from the Sun packed with an enormous amount of high-energy particles. While rare, they can be several times more devastating than the kind of solar storms that batter Earth every year, creating spectacular auroras and the occasional power blackouts. Large solar particle storms are known to have occurred around 994 AD, 663 BC, 5259 BC, and 7176 BC, and a few other candidates are under investigation. These storms were 'up to three orders of magnitude stronger than' any solar particle event observed directly by satellites in the modern age, according to a study published last year. Researchers warn that if such a solar particle storm were to hit Earth when its magnetic field is weakened, it could damage DNA in humans and impair aquatic ecosystems. In the latest study, scientists developed a model to assess the solar particle storm intensity during the last Ice Age. Such solar storms tend to enhance the normal production of radioactive forms of elements like carbon (14C) in the atmosphere by cosmic rays. Radiocarbon gets preserved in annual tree rings, and spikes in its levels – known as Miyake events – serve as a cosmic timestamp for dating extreme solar activity and cosmic weather. Researchers validated their new model using tree ring data from the 775 AD event, and then applied it to assess conditions during the dusk of the last Ice Age around 12350 BC. Scientists assessed the strength, timing, and terrestrial effects of the most extreme solar particle event. Their latest findings revise our understanding of solar physics and space weather extremes. "This event establishes a new worst-case scenario,' Dr Golubenko says. "Understanding its scale is critical for evaluating the risks posed by future solar storms to modern infrastructure like satellites, power grids, and communication systems,' she added.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store