logo
#

Latest news with #EastAntarctica

'Lost Mountains Found Beneath Ice': Antarctica's Bedrock Secrets Expose a Hidden World That's Been Buried for Millions of Years
'Lost Mountains Found Beneath Ice': Antarctica's Bedrock Secrets Expose a Hidden World That's Been Buried for Millions of Years

Sustainability Times

time19 hours ago

  • Science
  • Sustainability Times

'Lost Mountains Found Beneath Ice': Antarctica's Bedrock Secrets Expose a Hidden World That's Been Buried for Millions of Years

IN A NUTSHELL 🗻 Beneath Antarctica's ice, the hidden landscape of the Transantarctic Mountains reveals a dynamic geological past. reveals a dynamic geological past. 🔍 Recent studies highlight the complex history of bedrock formation, uplift, and erosion, linked to major tectonic shifts . . 📚 Researchers analyze mineral grains to uncover the geological secrets that influence glacial cycles and ice sheet dynamics. that influence glacial cycles and ice sheet dynamics. 🌍 Discoveries offer insights into the ancient tectonic history of Antarctica, challenging past assumptions and opening new research avenues. Antarctica, often perceived as a vast, frozen wasteland, conceals an astonishing secret beneath its thick ice cover: an ancient and rugged landscape that is just beginning to unveil its geological history. This hidden world, characterized by its dramatic topography, offers significant insights into the continent's dynamic past. Recent scientific endeavors have focused on the Transantarctic Mountains, a formidable range dividing East and West Antarctica. These studies, led by experts like Timothy Paulsen and Jeff Benowitz, are not only reshaping our understanding of Antarctica but also shedding light on the forces that have sculpted our planet over millions of years. Exploring Under-Ice Bedrock The intricate landscape concealed beneath Antarctica's ice has long intrigued scientists. At the heart of this mystery lies the bedrock of the Transantarctic Mountains, a geological marvel with a history spanning hundreds of millions of years. This bedrock serves as a crucial geological divide, separating the stable East Antarctic craton from the more volatile West Antarctic Rift System. Recent studies suggest a more active geological past than previously assumed, involving cycles of mountain formation, uplift, and erosion. These processes are linked to significant shifts in Earth's tectonic plates and periods of past glaciation. To unlock the secrets of this hidden bedrock, researchers analyzed mineral grains in igneous rocks from the Transantarctic Mountains. As Jeff Benowitz explained, the Antarctic ice sheets obscure the bedrock geology, yet the time-temperature evolution of these rocks provides essential clues to understanding the development of Antarctica's under-ice topography. This research highlights how ancient landscapes, preceding the rise of the Transantarctic Mountains, could have influenced glacial cycles. 'This Tiny Seed Controls Blood Sugar and Shields Your Heart': Doctors Urge Adding It to Your Breakfast Daily Punctuated Mountain Building In their quest to decode Antarctica's geological past, scientists have uncovered evidence of intermittent mountain-building phases and subsequent erosion events in the Transantarctic Mountain basement rocks. These findings suggest that the mountain range has undergone several cycles of formation and erosion over geological time. Timothy Paulsen highlights that these events align with major plate tectonic changes along Antarctica's margins and support a significant glacial period around 300 million years ago. The study reveals how the continent's topography has been shaped by uplift, erosion, and ancient glaciations, which may have influenced later ice sheet cycles. Additionally, recent research points to a hidden mountain range buried beneath the East Antarctic ice sheet, formed over 500 million years ago. This discovery further underscores the dynamic geological history of Antarctica, challenging past assumptions and opening new avenues for exploration. 'U.S. Military Caught Off Guard': China's New Turbine Blade Delivers Brutal Jet Power and Unstoppable Endurance Decoding Ancient Tectonic History The findings from these studies offer valuable insights into the ancient tectonic history of Antarctica and the evolution of continents over vast geological timescales. By understanding the processes that have shaped this icy continent, scientists can better comprehend the forces driving Earth's geological changes. The research, published in the journal Earth and Planetary Science Letters, underscores the importance of interdisciplinary collaboration in unraveling the mysteries of our planet's past. As scientists continue to probe the depths of Antarctica's ice-covered landscapes, they are piecing together a complex geological puzzle that has implications for understanding global tectonic processes. The Transantarctic Mountains, once considered a static feature, now reveal a dynamic history of formation and transformation, offering a window into the Earth's ancient past and its ongoing geological evolution. 'Century-Old Puzzle Finally Solved': Mathematicians Crack Code That Can Supercharge the World's Most Powerful Turbines The Future of Antarctic Research As we delve deeper into the mysteries of Antarctica, it becomes evident that this frozen continent holds the key to understanding Earth's geological history. The work of dedicated scientists like Timothy Paulsen and Jeff Benowitz is paving the way for future research, as they continue to explore the hidden landscapes beneath the ice. These findings not only enhance our knowledge of Antarctica but also contribute to a broader understanding of how continents evolve over time. As new technologies and methodologies emerge, the potential for uncovering further secrets beneath the ice is vast. What other hidden landscapes might await discovery? How will these revelations reshape our understanding of Earth's geological past and its future? The journey to unlock Antarctica's secrets is just beginning, and the implications for science and humanity are profound. How will our evolving understanding of this icy frontier influence our approach to studying and preserving the planet's geological heritage? Our author used artificial intelligence to enhance this article. Did you like it? 4.6/5 (20)

Gamburtsev Subglacial Mountains: Exploring Antarctica's hidden mountain range
Gamburtsev Subglacial Mountains: Exploring Antarctica's hidden mountain range

BBC News

time4 days ago

  • Science
  • BBC News

Gamburtsev Subglacial Mountains: Exploring Antarctica's hidden mountain range

When you think of Antarctica, you probably picture flat, cold and desolate landscapes, perhaps with the odd penguin here and there. But did you know there are actually rugged and rocky mountain ranges, valleys and hills not only above ground but also hidden one - buried deep below the surface of the icy continent? The ancient Gamburtsev Subglacial Mountains in the middle of East Antarctica were discovered beneath the highest point of the East Antarctic ice sheet in 1958. A group of explorers discovered them using sound waves to study the Earth's surfaces. But new research has shone a light on how this huge underground mountain range came to exist. Usually mountain ranges, like the Himalayas and the Andes, rise up due to movement of two tectonic plates in the Earth's crust clashing together. But there are no such plates in the Antarctic, leaving geologists scratching their heads as to how the Gamburtsev Mountains came to exist. However, the new study, published in Earth and Planetary Science Letters, suggests the hidden mountain chain appeared more than 500 million years ago when the supercontinent Gondwana, which was made up of what is now Africa, South America, Australia, India and Antarctica, was formed. Usually, as with the European Alps and other mountain ranges, the geography changes because they become worn down by erosion or re reshaped by later events. But because they have been 'hidden' by a deep layer of ice, the Gamburtsev Subglacial Mountains are one of the best-preserved ancient mountain belts on Earth.

Scientists solve mystery of Antarctic mountain range hidden for 500 million years
Scientists solve mystery of Antarctic mountain range hidden for 500 million years

The Independent

time29-05-2025

  • General
  • The Independent

Scientists solve mystery of Antarctic mountain range hidden for 500 million years

Have you ever imagined what Antarctica looks like beneath its thick blanket of ice? Hidden below are rugged mountains, valleys, hills and plains. Some peaks, like the towering Transantarctic Mountains, rise above the ice. But others, like the mysterious and ancient Gamburtsev Subglacial Mountains in the middle of East Antarctica, are completely buried. The Gamburtsev Mountains are similar in scale and shape to the European Alps. But we can't see them because the high alpine peaks and deep glacial valleys are entombed beneath kilometres of ice. How did they come to be? Typically, a mountain range will rise in places where two tectonic plates clash with each other. But East Antarctica has been tectonically stable for millions of years. Our new study, published in Earth and Planetary Science Letters, reveals how this hidden mountain chain emerged more than 500 million years ago when the supercontinent Gondwana formed from colliding tectonic plates. Our findings offer fresh insight into how mountains and continents evolve over geological time. They also help explain why Antarctica's interior has remained remarkably stable for hundreds of millions of years. A buried secret The Gamburtsev Mountains are buried beneath the highest point of the East Antarctic ice sheet. They were first discovered by a Soviet expedition using seismic techniques in 1958. Because the mountain range is completely covered in ice, it's one of the least understood tectonic features on Earth. For scientists, it's deeply puzzling. How could such a massive mountain range form and still be preserved in the heart of an ancient, stable continent? Most major mountain chains mark the sites of tectonic collisions. For example, the Himalayas are still rising today as the Indian and Eurasian plates continue to converge, a process that began about 50 million years ago. Plate tectonic models suggest the crust now forming East Antarctica came from at least two large continents more than 700 million years ago. These continents used to be separated by a vast ocean basin. The collision of these landmasses was key to the birth of Gondwana, a supercontinent that included what is now Africa, South America, Australia, India and Antarctica. Our new study supports the idea that the Gamburtsev Mountains first formed during this ancient collision. The colossal clash of continents triggered the flow of hot, partly molten rock deep beneath the mountains. As the crust thickened and heated during mountain building, it eventually became unstable and began to collapse under its own weight. Deep beneath the surface, hot rocks began to flow sideways, like toothpaste squeezed from a tube, in a process known as gravitational spreading. This caused the mountains to partially collapse, while still preserving a thick crustal 'root', which extends into Earth's mantle beneath. Crystal time capsules To piece together the timing of this dramatic rise and fall, we analysed tiny zircon grains found in sandstones deposited by rivers flowing from the ancient mountains more than 250 million years ago. These sandstones were recovered from the Prince Charles Mountains, which poke out of the ice hundreds of kilometres away. Zircons are often called 'time capsules' because they contain minuscule amounts of uranium in their crystal structure, which decays at a known rate and allows scientists to determine their age with great precision. These zircon grains preserve a record of the mountain-building timeline: the Gamburtsev Mountains began to rise around 650 million years ago, reached Himalayan heights by 580 million years ago, and experienced deep crustal melting and flow that ended around 500 million years ago. Most mountain ranges formed by continental collisions are eventually worn down by erosion or reshaped by later tectonic events. Because they've been preserved by a deep layer of ice, the Gamburtsev Subglacial Mountains are one of the best-preserved ancient mountain belts on Earth. While it's currently very challenging and expensive to drill through the thick ice to sample the mountains directly, our model offers new predictions to guide future exploration. For instance, recent fieldwork near the Denman Glacier on East Antarctica's coast uncovered rocks that may be related to these ancient mountains. Further analysis of these rock samples will help reconstruct the hidden architecture of East Antarctica. Antarctica remains a continent full of geological surprises, and the secrets buried beneath its ice are only beginning to be revealed. Jacqueline Halpin is an Associate Professor of Geology at the University of Tasmania. Nathan R. Daczko is a Professor of Earth Science at Macquarie University.

Breakthrough after mysterious mountain range found buried beneath Antarctica's ice
Breakthrough after mysterious mountain range found buried beneath Antarctica's ice

The Independent

time28-05-2025

  • General
  • The Independent

Breakthrough after mysterious mountain range found buried beneath Antarctica's ice

Have you ever imagined what Antarctica looks like beneath its thick blanket of ice? Hidden below are rugged mountains, valleys, hills and plains. Some peaks, like the towering Transantarctic Mountains, rise above the ice. But others, like the mysterious and ancient Gamburtsev Subglacial Mountains in the middle of East Antarctica, are completely buried. The Gamburtsev Mountains are similar in scale and shape to the European Alps. But we can't see them because the high alpine peaks and deep glacial valleys are entombed beneath kilometres of ice. How did they come to be? Typically, a mountain range will rise in places where two tectonic plates clash with each other. But East Antarctica has been tectonically stable for millions of years. Our new study, published in Earth and Planetary Science Letters, reveals how this hidden mountain chain emerged more than 500 million years ago when the supercontinent Gondwana formed from colliding tectonic plates. Our findings offer fresh insight into how mountains and continents evolve over geological time. They also help explain why Antarctica's interior has remained remarkably stable for hundreds of millions of years. A buried secret The Gamburtsev Mountains are buried beneath the highest point of the East Antarctic ice sheet. They were first discovered by a Soviet expedition using seismic techniques in 1958. Because the mountain range is completely covered in ice, it's one of the least understood tectonic features on Earth. For scientists, it's deeply puzzling. How could such a massive mountain range form and still be preserved in the heart of an ancient, stable continent? Most major mountain chains mark the sites of tectonic collisions. For example, the Himalayas are still rising today as the Indian and Eurasian plates continue to converge, a process that began about 50 million years ago. Plate tectonic models suggest the crust now forming East Antarctica came from at least two large continents more than 700 million years ago. These continents used to be separated by a vast ocean basin. The collision of these landmasses was key to the birth of Gondwana, a supercontinent that included what is now Africa, South America, Australia, India and Antarctica. Our new study supports the idea that the Gamburtsev Mountains first formed during this ancient collision. The colossal clash of continents triggered the flow of hot, partly molten rock deep beneath the mountains. As the crust thickened and heated during mountain building, it eventually became unstable and began to collapse under its own weight. Deep beneath the surface, hot rocks began to flow sideways, like toothpaste squeezed from a tube, in a process known as gravitational spreading. This caused the mountains to partially collapse, while still preserving a thick crustal 'root', which extends into Earth's mantle beneath. Crystal time capsules To piece together the timing of this dramatic rise and fall, we analysed tiny zircon grains found in sandstones deposited by rivers flowing from the ancient mountains more than 250 million years ago. These sandstones were recovered from the Prince Charles Mountains, which poke out of the ice hundreds of kilometres away. Zircons are often called 'time capsules' because they contain minuscule amounts of uranium in their crystal structure, which decays at a known rate and allows scientists to determine their age with great precision. These zircon grains preserve a record of the mountain-building timeline: the Gamburtsev Mountains began to rise around 650 million years ago, reached Himalayan heights by 580 million years ago, and experienced deep crustal melting and flow that ended around 500 million years ago. Most mountain ranges formed by continental collisions are eventually worn down by erosion or reshaped by later tectonic events. Because they've been preserved by a deep layer of ice, the Gamburtsev Subglacial Mountains are one of the best-preserved ancient mountain belts on Earth. While it's currently very challenging and expensive to drill through the thick ice to sample the mountains directly, our model offers new predictions to guide future exploration. For instance, recent fieldwork near the Denman Glacier on East Antarctica's coast uncovered rocks that may be related to these ancient mountains. Further analysis of these rock samples will help reconstruct the hidden architecture of East Antarctica. Antarctica remains a continent full of geological surprises, and the secrets buried beneath its ice are only beginning to be revealed. Jacqueline Halpin is an Associate Professor of Geology at the University of Tasmania. Nathan R. Daczko is a Professor of Earth Science at Macquarie University.

World reacts to shock development in Antarctica: ‘Oh my god!'
World reacts to shock development in Antarctica: ‘Oh my god!'

News.com.au

time10-05-2025

  • Science
  • News.com.au

World reacts to shock development in Antarctica: ‘Oh my god!'

Social media has erupted into debate after stunning findings revealed that the Antarctic Ice Sheet had gone through record-breaking growth after decades of loss. In what seems like music to the ears of climate sceptics who have long derided doom-and-gloom predictions, a study published in Science China Earth Sciences found that between 2021 and 2023 the Antarctic Ice Sheet (AIS) grew by an unprecedented amount. The report says that between 2021 and 2023, the ice sheet grew by almost 108 gigatons (or 108 billion metric tons) of ice per year. The reason for the rise is reportedly due to an unusual increase in precipitation, particularly in East Antarctica, leading to an accumulation of snow and ice. To put it in perspective, between 2002 and 2010, the AIS lost mass at a rate of almost 74 gigatons a year, resulting in a 0.2mm per year global sea-level rise. Between 2011 and 2020, that rose to more than 142 gigatons a year, a sea-level rise of 0.39mm per year. But the recent increase in ice has seen a 0.30mm offset between 2021-2023. In the Wilkes Land–Queen Mary Land region of Antarctica, four major glaciers — Totten, Moscow University, Denman and Vincennes Bay — had been losing the most mass. Cosmos reported that Vincennes Bay and Denham had suffered 'intense' losses, suffering about 72.5 per cent surface melt and 27.5 per cent ice loss according Dr Wei Wang of Shanghai's Tonji University. But between 2021 and 2023, this area had received the most mass gain. This is important considering those glaciers are among the most vulnerable on the continent and that Antarctica holds around half of the freshwater on Earth. However, for those believing it may be the end of global warming, scientist warn that this may not signal a long-term trend. Internet runs wild with finding: 'Oh my god' Despite there being a bit more to the story, the promising headline was enough for the internet to run with the findings. X user Collin Rugg, who has 1.8m followers on the platform, shared the news on his account, writing that it was 'crazy'. He also included a line tempering the findings, saying: 'Scientists say much of the gains are linked to precipitation patterns, which could be temporary.' But his comments quickly went nuts. Self-described 'populist Republican' and founder of The Loud Majority podcast Kevin Smith replied: 'So Al Gore was wrong again??? Is climate change over?' Canadian-American venture capitalist Chamath Palihapitiya commented: 'Oh my god! All the protests and virtue signalling worked!!!' January 6 rioter Derrick Evans added: 'Poor Greta will have to come up with a new scam.' Founder and Executive Director of Power The Future Daniel Turner claimed the story was proof you should 'never believe a climate alarmist'. And this is just the tip of the metaphorical iceberg. There were plenty more who hit out at the news, but others put it in context. Crypto journalist Laura Shin suggested: 'Wouldn't it be because of Covid? People were flying and driving less, so emissions were down?' Others pointed out that it was a 'temporary' and 'anomalous' precipitation accumulation and that it had been trending down for over 20 years. Professor at the University of Ottawa Ryan Katz-Rosene, PhD also tried to put it in context, showing a graph of how the ice sheet had fared since the 1980s. Yes, there was a record -breaking mass gain for the Antarctic ice sheet from 2021 to 2023, thanks to increased precipitation in East Antarctica. This is what it looks like in contextðŸ'‡ (h/t @Marcusgibson) — Ryan Katz-Rosene, PhD (@ryankatzrosene) May 5, 2025 Two-thirds of the world's freshwater is held between Antarctica and Greenland, with NASA finding that Greenland is declining at twice the rate of Antarctica — and there was no bounce back Greenland, which has been losing ice at a reasonably steady rate since 2002. This data is from NASA's GRACE (Gravity Recovery and Climate Experiment) mission — which ended in June 2017 — and GRACE Follow-On mission — which began in June 2018. Both missions have flown spacecraft around the Earth to study changes to the planet's waters, ice sheets and solid Earth. On average between 2002 and now, the Antarctic has lost an average of 136 gigatons per year, while Greenland is losing approximately 267 gigatons per year. Thanks to the growth between 2021-2023, current levels in 2025 are not as low as they were in January 2021, but also not by much.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store