logo
#

Latest news with #InfinityGalaxy

Bizarre "Infinity Galaxy" Could Hold the Secrets of Supermassive Black Holes
Bizarre "Infinity Galaxy" Could Hold the Secrets of Supermassive Black Holes

Yahoo

time3 days ago

  • Science
  • Yahoo

Bizarre "Infinity Galaxy" Could Hold the Secrets of Supermassive Black Holes

Astronomers using data collected by the James Webb Space Telescope have discovered a spectacular cosmic object they're calling the "Infinity Galaxy." The site of an epic head-on collision between two galaxies, it could harbor the secrets to how the heaviest black holes in the universe, the supermassive black holes found at the hearts of galaxies, are born and reach their unbelievable masses — masses extreme enough to organize trillions of stars around them. "Everything is unusual about this galaxy. Not only does it look very strange, but it also has this supermassive black hole that's pulling a lot of material in," Pieter van Dokkum, lead author of a new study published in the Astrophysical Journal Letters, said in a statement about the work. "As an unexpected bonus, it turns out that both galaxy nuclei also have an active supermassive black hole," van Dokkum added. "So, this system has three confirmed active black holes: two very massive ones in both of the galaxy nuclei, and the one in between them that might have formed there." The singularity-studded object was found by searching through public data collected in the COSMOS-Web survey, which is designed to document the evolution of galaxies, with data gathered on 800,000 realms and counting. In an image taken with the Webb, two bright spots represent the nuclei of each of the two colliding galaxies, both surrounded by their own ring of stars. This lends it the shape of an infinity symbol, hence its memorable name. What's most striking, though, is what appears between them, revealed in follow-up observations: an enormous supermassive black hole swimming in a sea of ionized gas. It's estimated to contain a mass equivalent to a million times that of our own Sun — and it's still actively growing. "It likely didn't just arrive there, but instead it formed there. And pretty recently," van Dokkum said. "We think we're witnessing the birth of a supermassive black hole — something that has never been seen before." This could be some of the most compelling evidence yet of black holes forming by directly collapsing into a singularity from a huge, heavy cloud of gas. The origins of supermassive black holes are one of the great mysteries of cosmology. They undeniably exist, forming the heart of the largest galaxies, including our own Milky Way — but how they form and gain such unbelievable heft is still hotly debated; the heaviest black holes may weigh hundreds of billions of solar masses. The most well-known way that black holes are born is through the collapse of a very massive star that explodes in a supernova. This might spawn a black hole with several to a hundred times the mass of the Sun, maybe even a thousand. Then, give one of these stellar-mass black holes hundreds of millions to billions of years to devour matter that falls into it, or merge with other black holes, and it might reach a supermassive stature. Astronomers, however, have observed black holes boasting millions of solar masses while existing just 400 million years after the Big Bang, which simply isn't enough time for one to reach its size by gradually accreting matter. That points to another possibility called the "heavy seed theory," explains van Dokkum, "where a much larger black hole, maybe up to one million times the mass of our Sun, forms directly from the collapse of a large gas cloud." This would've been facilitated by the hot conditions of the early universe, allowing a gas cloud to collapse into one large object instead of forming numerous smaller stars. "It's not clear that this direct-collapse process could work in practice," van Dokkum said. But there's compelling reason to believe that the Infinity Galaxy is home to a black hole born through this exact process. The best clue is the central supermassive black hole's velocity, which matches up with the surrounding gas, strongly suggesting it formed right where we're seeing it. If it formed elsewhere in the cosmos and barged into the mix, the velocity would be significantly higher. What astronomers think happened, then, is that when the constituent two galaxies collided, the gas contained in them compressed to form a "dense knot," van Dokkum said, "which then collapsed into a black hole." "We can't say definitively that we have found a direct collapse black hole," van Dokkum concluded. "But we can say that these new data strengthen the case that we're seeing a newborn black hole, while eliminating some of the competing explanations." More on black holes: Scientists Detect Sign of Something Impossible Out in Deep Space Solve the daily Crossword

Astronomers Discover Uncommon Way for Black Holes to Form
Astronomers Discover Uncommon Way for Black Holes to Form

Yahoo

time3 days ago

  • Science
  • Yahoo

Astronomers Discover Uncommon Way for Black Holes to Form

Artist's rendering of the James Webb Telescope in space Credit - Getty Images/iStockphoto NASA's James Webb Space Telescope continues to deliver the goods. Launched on Christmas Day, 2021, it has since sent back a storm of dazzling images and a trove of good science. Now Webb has done it again. As NASA reports, two astronomers working with raw Webb data the space agency periodically makes available to researchers, have found evidence of a fast-growing black hole in an unexpected place and formed in an unexpected way. What the two astronomers—Pieter van Dokkumum of Yale University and Gabriel Brammer of the University of Copenhagen—found was a pair of spiral galaxies that collided in space. Each galaxy has a black hole at its center that was already present before the collision and which emit a red glow surrounded by a ring of light and matter, giving the overall formation the shape of the infinity symbol. Van Dokkum and Brammer nicknamed the pair the Infinity Galaxy. What surprised them was that the formation was also home to a third, larger, supermassive black hole—one with the mass of perhaps one million suns. This black hole was not in the center of one or the other galaxy as a supermassive black hole should be, but rather in the mashup of dust and gasses between them. 'Everything is unusual about this galaxy,' said Van Dokkum, in an extensive description he wrote for NASA. 'Not only does it look strange, but it also has this supermassive black hole that's pulling a lot of material in.' Just how the object formed is unknown, but Van Dokkum and Brammer have two theories, called the 'light seeds' and 'heavy seeds' scenarios. In the light seeds version, a star explodes and its core collapses, forming a black hole with a mass of perhaps 1,000 suns. Over time, other nearby stars collapse and form their own black holes and finally all of the bodies merge to form one supermassive black hole. But that theory has a problem. 'The merger process takes time,' Van Dokkum says, 'and Webb has found incredibly massive black holes at incredibly early times in the universe—possibly even too early for the process to explain them.' That doesn't mean the light seeds scenario doesn't ever play out, but it does mean that it's not as common as astronomers may believe. In the heavy seeds scenario a supermassive black hole forms directly from the collapse of a large gas cloud. In the case of the Infinity Galaxy, this occurred during the collision, when the galactic gas was shocked and compressed by the violence of the cosmic crackup. 'This compression might just be enough to form a dense knot, which then compressed into a black hole,' Van Dokkum says. That process is also called a direct collapse black hole. Not only did a supermassive black hole form from this collision, that black hole is still growing. Radio and X-ray emissions confirmed by NASA's Chandra X-ray Observatory and by the ground-based Very Large Array, confirm that the black hole is still pulling in prodigious amounts of dust and gas from its surroundings. Van Dokkum and Brammer prefer the heavy seeds scenario to explain what they found since it would be such a natural result of a galactic collision. 'By looking at the Infinity Galaxy, we think we have pieced together a story of how this could have happened here,' says Van Dokkum. But they concede that other, less likely occurrences could explain the supermassive black hole. For one thing, the body between the two galaxies in the Infinity Galaxy might be a runaway black hole that was ejected from its parent galaxy and is now passing through the Infinity Galaxy, and just happened to have been spotted by the Webb telescope during this relatively brief interregnum. Alternatively, the supermassive black hole might be at the center of a third galaxy that happens to be in the foreground of the same area of sky as the Infinity Galaxy. If that third galaxy were a dwarf galaxy, it might be faint enough that only the superheated gas and dust surrounding the black hole would be visible. But the researchers don't expect those theories to be borne out. If the black hole were a runaway, the velocity of the gasses flowing into it would likely be different from the velocity of the gasses in the Infinity Galaxy. While they haven't yet measured the speed of the gasses, they expect them to be similar. The idea that the black hole lies at the center of a dwarf galaxy can be dismissed almost out of hand since dwarf galaxies typically don't form black holes that big. All that is enough for the astronomers to claim at least a cautious victory in their discovery. 'We can't say definitively that we have found a direct collapse black hole,' says Van Dokkum. 'But we can say that these new data strengthen the case that we're seeing a newborn black hole while eliminating some of the competing explanations.' Write to Jeffrey Kluger at Solve the daily Crossword

Astronomers Discover Uncommon Way for Black Holes to Form
Astronomers Discover Uncommon Way for Black Holes to Form

Time​ Magazine

time4 days ago

  • Science
  • Time​ Magazine

Astronomers Discover Uncommon Way for Black Holes to Form

NASA's James Webb Space Telescope continues to deliver the goods. Launched on Christmas Day, 2021, it has since sent back a storm of dazzling images and a trove of good science. Now Webb has done it again. As NASA reports, two astronomers working with raw Webb data the space agency periodically makes available to researchers, have found evidence of a fast-growing black hole in an unexpected place and formed in an unexpected way. What the two astronomers—Pieter van Dokkumum of Yale University and Gabriel Brammer of the University of Copenhagen—found was a pair of spiral galaxies that collided in space. Each galaxy has a black hole at its center that was already present before the collision and which emit a red glow surrounded by a ring of light and matter, giving the overall formation the shape of the infinity symbol. Van Dokkum and Brammer nicknamed the pair the Infinity Galaxy. What surprised them was that the formation was also home to a third, larger, supermassive black hole—one with the mass of perhaps one million suns. This black hole was not in the center of one or the other galaxy as a supermassive black hole should be, but rather in the mashup of dust and gasses between them. 'Everything is unusual about this galaxy,' said Van Dokkum, in an extensive description he wrote for NASA. 'Not only does it look strange, but it also has this supermassive black hole that's pulling a lot of material in.' Just how the object formed is unknown, but Van Dokkum and Brammer have two theories, called the 'light seeds' and 'heavy seeds' scenarios. In the light seeds version, a star explodes and its core collapses, forming a black hole with a mass of perhaps 1,000 suns. Over time, other nearby stars collapse and form their own black holes and finally all of the bodies merge to form one supermassive black hole. But that theory has a problem. 'The merger process takes time,' Van Dokkum says, 'and Webb has found incredibly massive black holes at incredibly early times in the universe—possibly even too early for the process to explain them.' That doesn't mean the light seeds scenario doesn't ever play out, but it does mean that it's not as common as astronomers may believe. In the heavy seeds scenario a supermassive black hole forms directly from the collapse of a large gas cloud. In the case of the Infinity Galaxy, this occurred during the collision, when the galactic gas was shocked and compressed by the violence of the cosmic crackup. 'This compression might just be enough to form a dense knot, which then compressed into a black hole,' Van Dokkum says. That process is also called a direct collapse black hole. Not only did a supermassive black hole form from this collision, that black hole is still growing. Radio and X-ray emissions confirmed by NASA's Chandra X-ray Observatory and by the ground-based Very Large Array, confirm that the black hole is still pulling in prodigious amounts of dust and gas from its surroundings. Van Dokkum and Brammer prefer the heavy seeds scenario to explain what they found since it would be such a natural result of a galactic collision. 'By looking at the Infinity Galaxy, we think we have pieced together a story of how this could have happened here,' says Van Dokkum. But they concede that other, less likely occurrences could explain the supermassive black hole. For one thing, the body between the two galaxies in the Infinity Galaxy might be a runaway black hole that was ejected from its parent galaxy and is now passing through the Infinity Galaxy, and just happened to have been spotted by the Webb telescope during this relatively brief interregnum. Alternatively, the supermassive black hole might be at the center of a third galaxy that happens to be in the foreground of the same area of sky as the Infinity Galaxy. If that third galaxy were a dwarf galaxy, it might be faint enough that only the superheated gas and dust surrounding the black hole would be visible. But the researchers don't expect those theories to be borne out. If the black hole were a runaway, the velocity of the gasses flowing into it would likely be different from the velocity of the gasses in the Infinity Galaxy. While they haven't yet measured the speed of the gasses, they expect them to be similar. The idea that the black hole lies at the center of a dwarf galaxy can be dismissed almost out of hand since dwarf galaxies typically don't form black holes that big. All that is enough for the astronomers to claim at least a cautious victory in their discovery. 'We can't say definitively that we have found a direct collapse black hole,' says Van Dokkum. 'But we can say that these new data strengthen the case that we're seeing a newborn black hole while eliminating some of the competing explanations.'

JWST finds unusual black hole in the center of the Infinity Galaxy: 'How can we make sense of this?'
JWST finds unusual black hole in the center of the Infinity Galaxy: 'How can we make sense of this?'

Yahoo

time5 days ago

  • Science
  • Yahoo

JWST finds unusual black hole in the center of the Infinity Galaxy: 'How can we make sense of this?'

When you buy through links on our articles, Future and its syndication partners may earn a commission. Using the James Webb Space Telescope (JWST), astronomers have discovered an oddball galaxy, dubbed the Infinity Galaxy, that could be host to a "direct collapse black hole." That is, a black hole originally created directly from a vast cloud of collapsing gas and dust rather than a dying star. The Infinity Galaxy gets its name from the fact that its shape resembles an infinity symbol (a sideways 8) with two red lobes or "nuclei." This shape is thought to have arisen because the Infinity Galaxy was formed as two disk galaxies engaged in a head-on collision. What makes this highly unusual is the fact that this black hole sits between the two colliding galaxies in a vast cloud of gas, rather than in either respective nucleus. From its perch between these galaxies, the black hole now feeds greedily on that gas, but researchers think that same cloud also once birthed it. That would make this the first observational evidence of the direct collapse pathway of black hole birth. The researchers behind these findings uncovered the Infinity Galaxy while examining images from the JWST's 255-hour treasury COSMOS-Web survey. In addition to the suspected direct collapse black hole that sits between the colliding galaxies, the team found that each nucleus of those galaxies also contains a supermassive black hole! "Everything is unusual about this galaxy. Not only does it look very strange, but it also has this supermassive black hole that's pulling a lot of material in," team leader and Yale University researcher Pieter van Dokkum said in a statement. "The biggest surprise of all was that the black hole was not located inside either of the two nuclei but in the middle. "We asked ourselves: How can we make sense of this?" van Dokkum explained that finding a black hole not in the nucleus of a massive galaxy isn't, in itself, unusual. What is strange is the question of how that black hole got there. "It likely didn't just arrive there, but instead it formed there," van Dokkum said. "And pretty recently. In other words, we think we're witnessing the birth of a supermassive black hole – something that has never been seen before." This discovery could solve an intriguing mystery regarding the observation of supermassive black holes with masses millions or billions of times that of the sun, less than 1 billion years after the Big Bang. Black holes could skip stellar deaths and supernovas Since it began operating three years ago, the JWST has delivered something of a conundrum to cosmologists; observations that show supermassive black holes seem common as early as 500 million years after the Big Bang. That's a problem because it was previously proposed that supermassive black holes form through successive mergers of smaller black holes. However, beginning this process with so-called stellar-mass black holes would require waiting for the first generation of stars to form, live their lives, then collapse in supernova explosions. The resulting black holes would have to undergo a series of mergers and periods of intense feeding upon interstellar gas and dust. This process would take at least a billion years to "grow" a black hole to supermassive status. Thus, seeing a multitude of supermassive black holes before the universe was 1 billion years old is problematic. That is, unless these bodies got a head start by skipping the stellar life and birth stage of this process. "How supermassive black holes formed is a long-standing question. There are two main theories, called 'light seeds' and 'heavy seeds.' In the light seed theory, you start with small black holes formed when a star's core collapses and the star explodes as a supernova," van Dokkum explained. "That might result in a black hole weighing up to about 1,000 suns. You form a lot of them in a small space, and they merge over time to become a much more massive black hole." As mentioned above, the problem with that is the time this process would take and the JWST's discovery of incredibly massive black holes at early stages of our 13.8 billion-year-old universe. Black holes could have heavy seeds Alternatively, the heavy seed theory sees supermassive black hole growth kickstarted with a much larger black hole, maybe up to one million times the mass of the sun. This forms directly from the collapse of a large gas cloud. "You immediately form a giant black hole, so it's much quicker. However, the problem with forming a black hole out of a gas cloud is that gas clouds like to form stars as they collapse rather than a black hole, so you have to find some way of preventing that. It's not clear that this direct-collapse process could work in practice," van Dokkum said. "By looking at the data from the Infinity Galaxy, we think we've pieced together a story of how this could have happened here." The researchers suggest that as the two disk galaxies collided, a ring structure of stars, visible in the JWST image, was formed. During this collision, gas within these two galaxies would have been shocked and compressed. They think this compression may have been so extreme that it formed a "dense knot" in the gas, which then collapsed into a black hole. As van Dokkum explained, there is a wealth of circumstantial evidence for this formation channel for the black hole in the Infinity Galaxy. "We observe a large swath of ionized gas, specifically hydrogen that has been stripped of its electrons, that's right in the middle between the two nuclei, surrounding the supermassive black hole," he continued. "We also know that the black hole is actively growing – we see evidence of that in X-rays from NASA's Chandra X-ray Observatory and radio from the Very Large Array. Nevertheless, the question is, did it form there?" There are two possible explanations that don't involve a direct collapse black hole forming at the intersection of these merged galaxies. "First, it could be a runaway black hole that got ejected from a galaxy and just happens to be passing through," van Dokkum said. "Second, it could be a black hole at the center of a third galaxy in the same location on the sky. If it were in a third galaxy, we would expect to see the surrounding galaxy unless it were a faint dwarf galaxy. However, dwarf galaxies don't tend to host giant black holes. "If the black hole were a runaway, or if it were in an unrelated galaxy, we would expect it to have a very different velocity from the gas in the Infinity Galaxy." To test this, the team intends to measure the velocity of the gas and the velocity of the black hole and compare them. Should those velocities be close, within around 30 miles per second (50 kilometers per second), then van Dokkum asserts that it will be hard to argue that the black hole is not formed from that gas. Related Stories: —The James Webb Space Telescope has discovered its 1st exoplanet and snapped its picture (image) —Astronomers discover origins of mysterious double hot Jupiter exoplanets: 'It is a dance of sorts' —NASA exoplanet-hunting spacecraft and citizen scientists discover a cool new alien world "Our preliminary results are exciting. First, the presence of an extended distribution of ionized gas between the two nuclei is confirmed. Second, the black hole is beautifully in the middle of the velocity distribution of this surrounding gas, as expected if it formed there. This is the key result that we were after!" van Dokkum continued. "Third, as an unexpected bonus, it turns out that both galaxy nuclei also have an active supermassive black hole." Though the team can't say definitively that they discovered a direct collapse black hole, they can state with confidence that this JWST data strengthens the case for this being a newborn black hole, while eliminating some of the counter-explanations to the direct collapse pathway. "This system has three confirmed active black holes: two very massive ones in both of the galaxy nuclei, and the one in between them that might have formed there," van Dokkum said. "We will continue to pore through the data and investigate these possibilities." Solve the daily Crossword

Webb spots 'Infinity Galaxy' that sheds light on black hole formation
Webb spots 'Infinity Galaxy' that sheds light on black hole formation

Engadget

time7 days ago

  • Science
  • Engadget

Webb spots 'Infinity Galaxy' that sheds light on black hole formation

Discoveries keep pouring out of the James Webb Space Telescope (JWST). Researchers observed an unusual cluster, which they dubbed the Infinity Galaxy. It appears to support a leading theory on how some supermassive black holes form. Although "Infinity Galaxy" sounds like a place Thanos would hang out, it merely describes its appearance. Two compact, red nuclei, each surrounded by a ring, give the cluster the shape of an infinity symbol. What's inside is more interesting. (After all, this is a much lower-res image than some of the eye candy the Webb telescope has yielded.) Researchers believe the Infinity Galaxy formed when two spiral galaxies (the nuclei in the image) collided. Between them lies a young supermassive black hole within an enormous cloud of gas. Supermassive black holes can range from hundreds of thousands of times the size of our sun to millions or billions of times its size. This one is about a million times as big. The Infinity Galaxy, overlaid with a contour map indicating the supermassive black hole (NASA / JWST) The Infinity Galaxy lends weight to the direct collapse theory of black hole formation. As you probably know, most black holes form when massive stars collapse. The presence of supermassive ones is harder to explain. One theory proposes that smaller black holes merge over time to form a supermassive one. The problem there is that some supermassive black holes formed soon after the Big Bang. So, scientists think some supermassive ones form instead from the collapse of gas clouds, much like the one we see here. The Infinity Galaxy may be the best evidence yet for that direct collapse hypothesis. One of the paper's lead authors summarized the findings. "By looking at the data from the Infinity Galaxy, we think we've pieced together a story of how a direct collapse could have happened here," Pieter van Dokkum wrote in a press release. "Two disk galaxies collide, forming the ring structures of stars that we see. During the collision, the gas within these two galaxies shocks and compresses. This compression might just be enough to form a dense knot, which then collapsed into a black hole." The team can't definitively confirm the theory from their current data. "But we can say that these new data strengthen the case that we're seeing a newborn black hole, while eliminating some of the competing explanations," van Dokkum added. "We will continue to pore through the data and investigate these possibilities."

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store