Latest news with #LargeMagellanicCloud
Yahoo
7 days ago
- Science
- Yahoo
NASA unveils 9 stunning snapshots of the cosmos in X-ray vision: Space photo of the week
When you buy through links on our articles, Future and its syndication partners may earn a commission. QUICK FACTS What it is: Nine archive images from NASA's Chandra X-ray telescope Where it is: Nearby pockets of star formation and distant galaxies with giant black holes When it was shared: July 23, 2025 This new collection of images from NASA's Chandra space telescope — which launched in 1999 — shows what different objects in space look like with an added layer of X-ray vision. While the Hubble Space Telescope images the cosmos in mostly visible light and the James Webb Space Telescope (JWST) relies on infrared light that's beyond the limits of human vision, Chandra focuses only on high-energy X-ray light. Each of these space telescopes therefore sees the universe through a different part of the electromagnetic spectrum, and combining these enables researchers to study the cosmos in greater detail. Chandra's ability to see in X-ray light means it can detect hot, energetic regions like black holes, supernova remnants and pockets of super-hot gas. In the newly released images, these energetic X-rays are shown in pink and purple hues. Related: James Webb and Hubble telescopes join forces to explore a cosmic nursery: Space photo of the week The top row shows N79 (left), a region of star formation in the Large Magellanic Cloud, which is a small satellite neighbor galaxy to the Milky Way. In Chandra's image, N79 blazes with hot gas shaped by energetic stars. NGC 2146 (middle) is a spiral galaxy bursting with X-ray-emitting phenomena like supernova remnants and winds from giant stars. And IC 348 (right) is another star-forming region that shimmers with reflective interstellar wisps and scattered young stars. The middle row shows two spiral galaxies: the Milky Way-like M83 (left) and NGC 1068 (right). The latter galaxy's core is illuminated by high-energy X-rays generated by winds from its black hole, which blow at 1 million mph (1.6 million km/h). Meanwhile, M82 (center) is a starburst galaxy, featuring plumes of superheated gas produced as stars form at an extraordinary rate. RELATED STORIES —Astronomers witness a newborn planet emerging from the dust around a sun-like star: Space photo of the week —42 jaw-dropping James Webb Space Telescope images —Monster black hole jet from the early universe is basking in the 'afterglow' of the Big Bang On the bottom row is NGC 346 (left), a young cluster home to thousands of newborn stars scattered among the glowing debris of an exploded star. IC 1623 (center) shows two galaxies merging, which is triggering the formation of new stars that glow in X-ray light. And Westerlund 1 (right), the largest and closest super star cluster to Earth, contains thousands of stars showering the cluster with powerful X-rays. NASA also released a video exploring the images in more detail and created a page showing separate images of each object from Chandra, Hubble and JWST. Solve the daily Crossword


Yomiuri Shimbun
10-07-2025
- Science
- Yomiuri Shimbun
Astronomers Get Picture of Aftermath of Double Detonation
WASHINGTON (Reuters) — The explosion of a star, called a supernova, is an immensely violent event. It usually involves a star more than eight times the mass of our sun that exhausts its nuclear fuel and undergoes a core collapse, triggering a single powerful explosion. But a rarer kind of supernova involves a different type of star — a stellar ember called a white dwarf — and a double detonation. Researchers have obtained photographic evidence of this type of supernova for the first time, using the European Southern Observatory's Chile-based Very Large Telescope. The back-to-back explosions obliterated a white dwarf that had a mass roughly equal to the sun and was located about 160,000 light-years from Earth in the direction of the constellation Dorado in a galaxy near the Milky Way called the Large Magellanic Cloud. The image shows the scene of the explosion roughly 300 years after it occurred, with two concentric shells of the element calcium moving outward. This type of explosion, called a Type Ia supernova, would have involved the interaction between a white dwarf and a closely orbiting companion star — either another white dwarf or an unusual star rich in helium — in what is called a binary system. The primary white dwarf through its gravitational pull would begin to siphon helium from its companion. The helium on the white dwarf's surface at some point would become so hot and dense that it would detonate, producing a shockwave that would compress and ignite the star's underlying core and trigger a second detonation. 'Nothing remains. The white dwarf is completely disrupted,' said Priyam Das, a doctoral student in astrophysics at the University of New South Wales Canberra in Australia, lead author of the study published on July 2 in the journal Nature Astronomy. 'The time delay between the two detonations is essentially set by the time it takes the helium detonation to travel from one pole of the star all the way around to the other. It's only about two seconds,' said astrophysicist and study coauthor Ivo Seitenzahl, a visiting scientist at the Australian National University in Canberra. In the more common type of supernova, a remnant of the massive exploded star is left behind in the form of a dense neutron star or a black hole. The researchers used the Very Large Telescope's Multi-Unit Spectroscopic Explorer, or MUSE, instrument to map the distribution of different chemical elements in the supernova aftermath. Calcium is seen in blue in the image — an outer ring caused by the first detonation and an inner ring by the second. These two calcium shells represent 'the perfect smoking-gun evidence of the double-detonation mechanism,' Das said. 'We can call this forensic astronomy — my made-up term — since we are studying the dead remains of stars to understand what caused the death,' Das said. Stars with up to eight times the mass of our sun appear destined to become a white dwarf. They eventually burn up all the hydrogen they use as fuel. Gravity then causes them to collapse and blow off their outer layers in a 'red giant' stage, eventually leaving behind a compact core — the white dwarf. The vast majority of these do not explode as supernovas. While scientists knew of the existence of Type Ia supernovas, there had been no clear visual evidence of such a double detonation until now. Type Ia supernovas are important in terms of celestial chemistry in that they forge heavier elements such as calcium, sulfur and iron. 'This is essential for understanding galactic chemical evolution including the building blocks of planets and life,' Das said. A shell of sulfur also was seen in the new observations of the supernova aftermath. Iron is a crucial part of Earth's planetary composition and, of course, a component of human red blood cells. In addition to its scientific importance, the image offers aesthetic value. 'It's beautiful,' Seitenzahl said. 'We are seeing the birth process of elements in the death of a star. The Big Bang only made hydrogen and helium and lithium. Here we see how calcium, sulfur or iron are made and dispersed back into the host galaxy, a cosmic cycle of matter.'

Ammon
03-07-2025
- Science
- Ammon
Astronomers get picture of aftermath of a star's double detonation
Ammon News - The explosion of a star, called a supernova, is an immensely violent event. It usually involves a star more than eight times the mass of our sun that exhausts its nuclear fuel and undergoes a core collapse, triggering a single powerful explosion. But a rarer kind of supernova involves a different type of star - a stellar ember called a white dwarf - and a double detonation. Researchers have obtained photographic evidence of this type of supernova for the first time, using the European Southern Observatory's Chile-based Very Large Telescope. The back-to-back explosions obliterated a white dwarf that had a mass roughly equal to the sun and was located about 160,000 light‑years from Earth in the direction of the constellation Dorado in a galaxy near the Milky Way called the Large Magellanic Cloud. A light-year is the distance light travels in a year, 5.9 trillion miles (9.5 trillion km). The image shows the scene of the explosion roughly 300 years after it occurred, with two concentric shells of the element calcium moving outward. This type of explosion, called a Type Ia supernova, would have involved the interaction between a white dwarf and a closely orbiting companion star - either another white dwarf or an unusual star rich in helium - in what is called a binary system. The primary white dwarf through its gravitational pull would begin to siphon helium from its companion. The helium on the white dwarf's surface at some point would become so hot and dense that it would detonate, producing a shockwave that would compress and ignite the star's underlying core and trigger a second detonation. "Nothing remains. The white dwarf is completely disrupted," said Priyam Das, a doctoral student in astrophysics at the University of New South Wales Canberra in Australia, lead author of the study published on Wednesday in the journal Nature Astronomy, opens new tab. "The time delay between the two detonations is essentially set by the time it takes the helium detonation to travel from one pole of the star all the way around to the other. It's only about two seconds," said astrophysicist and study co-author Ivo Seitenzahl, a visiting scientist at the Australian National University in Canberra. In the more common type of supernova, a remnant of the massive exploded star is left behind in the form of a dense neutron star or a black hole. The researchers used the Very Large Telescope's Multi-Unit Spectroscopic Explorer, or MUSE, instrument to map the distribution of different chemical elements in the supernova aftermath. Calcium is seen in blue in the image - an outer ring caused by the first detonation and an inner ring by the second. These two calcium shells represent "the perfect smoking-gun evidence of the double-detonation mechanism," Das said. "We can call this forensic astronomy - my made-up term - since we are studying the dead remains of stars to understand what caused the death," Das said. Stars with up to eight times the mass of our sun appear destined to become a white dwarf. They eventually burn up all the hydrogen they use as fuel. Gravity then causes them to collapse and blow off their outer layers in a "red giant" stage, eventually leaving behind a compact core - the white dwarf. The vast majority of these do not explode as supernovas. While scientists knew of the existence of Type Ia supernovas, there had been no clear visual evidence of such a double detonation until now. Type Ia supernovas are important in terms of celestial chemistry in that they forge heavier elements such as calcium, sulfur and iron. "This is essential for understanding galactic chemical evolution including the building blocks of planets and life," Das said. A shell of sulfur also was seen in the new observations of the supernova aftermath. Iron is a crucial part of Earth's planetary composition and, of course, a component of human red blood cells. In addition to its scientific importance, the image offers aesthetic value. "It's beautiful," Seitenzahl said. "We are seeing the birth process of elements in the death of a star. The Big Bang only made hydrogen and helium and lithium. Here we see how calcium, sulfur or iron are made and dispersed back into the host galaxy, a cosmic cycle of matter." Reuters


India Today
03-07-2025
- Science
- India Today
Astronomers get first visual of a sun dying by detonating twice
In a first-of-its-kind observation, astronomers have obtained the visual evidence of a star dying by double detonation, when stars are known to disappear by giant European Southern Observatory's Very Large Telescope has studied the centuries-old remains of supernova SNR 0509-67.5 to confirm the patterns of dual back-to-back explosions obliterated a white dwarf that had a mass roughly equal to the sun and was located about 1,60,000 lightyears from Earth in the direction of the constellation Dorado in a galaxy near the Milky Way called the Large Magellanic Cloud. A light-year is the distance light travels in a year, 5.9 trillion miles (9.5 trillion km). This image shows the distribution of calcium in the supernova remnant SNR 0509-67.5. (Photo: ESO) advertisement "The explosions of white dwarfs play a crucial role in astronomy. Yet, despite their importance, the long-standing puzzle of the exact mechanism triggering their explosion remains unsolved," Priyam Das, a PhD student at the University of New South Wales Canberra, who led the study, details of the finding were published in the journal Nature Astronomy. Astronomers had long been suspecting that some stars do meet their end of life with a dual detonation and new images prove their hunch was right: at least some Type Ia supernovae explode through a 'double-detonation' mechanism instead."The time delay between the two detonations is essentially set by the time it takes the helium detonation to travel from one pole of the star all the way around to the other. It's only about two seconds," said astrophysicist and study co-author Ivo Seitenzahl, a visiting scientist at the Australian National University in Canberra. This image marks the position on the sky of the supernova remnant SNR 0509-67.5. (Photo: ESO) advertisementIn the more common type of supernova, a remnant of the massive exploded star is left behind in the form of a dense neutron star or a black hole.'This tangible evidence of a double-detonation not only contributes towards solving a long-standing mystery, but also offers a visual spectacle,' Priyam says, describing the 'beautifully layered structure' that a supernova creates. For him, 'revealing the inner workings of such a spectacular cosmic explosion is incredibly rewarding.'- EndsTrending Reel

Globe and Mail
03-07-2025
- Science
- Globe and Mail
Astronomers get picture of aftermath of a star's double detonation for the first time
The explosion of a star, called a supernova, is an immensely violent event. It usually involves a star more than eight times the mass of our sun that exhausts its nuclear fuel and undergoes a core collapse, triggering a single powerful explosion. But a rarer kind of supernova involves a different type of star - a stellar ember called a white dwarf - and a double detonation. Researchers have obtained photographic evidence of this type of supernova for the first time, using the European Southern Observatory's Chile-based Very Large Telescope. The back-to-back explosions obliterated a white dwarf that had a mass roughly equal to the sun and was located about 160,000 light-years from Earth in the direction of the constellation Dorado in a galaxy near the Milky Way called the Large Magellanic Cloud. A light-year is the distance light travels in a year, 5.9 trillion miles (9.5 trillion km). The image shows the scene of the explosion roughly 300 years after it occurred, with two concentric shells of the element calcium moving outward. This type of explosion, called a Type Ia supernova, would have involved the interaction between a white dwarf and a closely orbiting companion star - either another white dwarf or an unusual star rich in helium - in what is called a binary system. The primary white dwarf through its gravitational pull would begin to siphon helium from its companion. The helium on the white dwarf's surface at some point would become so hot and dense that it would detonate, producing a shockwave that would compress and ignite the star's underlying core and trigger a second detonation. First images shared from the Vera C. Rubin Observatory reveal why it will change astronomy forever 'Nothing remains. The white dwarf is completely disrupted,' said Priyam Das, a doctoral student in astrophysics at the University of New South Wales Canberra in Australia, lead author of the study published on Wednesday in the journal Nature Astronomy. 'The time delay between the two detonations is essentially set by the time it takes the helium detonation to travel from one pole of the star all the way around to the other. It's only about two seconds,' said astrophysicist and study co-author Ivo Seitenzahl, a visiting scientist at the Australian National University in Canberra. In the more common type of supernova, a remnant of the massive exploded star is left behind in the form of a dense neutron star or a black hole. The researchers used the Very Large Telescope's Multi-Unit Spectroscopic Explorer, or MUSE, instrument to map the distribution of different chemical elements in the supernova aftermath. Calcium is seen in blue in the image - an outer ring caused by the first detonation and an inner ring by the second. These two calcium shells represent 'the perfect smoking-gun evidence of the double-detonation mechanism,' Das said. 'We can call this forensic astronomy - my made-up term - since we are studying the dead remains of stars to understand what caused the death,' Das said. Can science solve the puzzle of consciousness? Stars with up to eight times the mass of our sun appear destined to become a white dwarf. They eventually burn up all the hydrogen they use as fuel. Gravity then causes them to collapse and blow off their outer layers in a 'red giant' stage, eventually leaving behind a compact core - the white dwarf. The vast majority of these do not explode as supernovas. While scientists knew of the existence of Type Ia supernovas, there had been no clear visual evidence of such a double detonation until now. Type Ia supernovas are important in terms of celestial chemistry in that they forge heavier elements such as calcium, sulfur and iron. 'This is essential for understanding galactic chemical evolution including the building blocks of planets and life,' Das said. A shell of sulfur also was seen in the new observations of the supernova aftermath. Iron is a crucial part of Earth's planetary composition and, of course, a component of human red blood cells. In addition to its scientific importance, the image offers aesthetic value. 'It's beautiful,' Seitenzahl said. 'We are seeing the birth process of elements in the death of a star. The Big Bang only made hydrogen and helium and lithium. Here we see how calcium, sulfur or iron are made and dispersed back into the host galaxy, a cosmic cycle of matter.'